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ABSTRACT

Agricultural irrigation faces escalating challenges in water management due to the ongoing
impacts of climate change. In this study, our goal is to enhance the precision of precipitation
prediction to offer more dependable support for agricultural irrigation decision-making. We adopted
a multi-model fusion algorithm based on long and short-term memory networks and integrated
various data sources, including meteorological station observations and satellite remote sensing
gridded data, to construct a comprehensive precipitation prediction model.

The objective of this research is to develop an efficient and accurate precipitation prediction
model that can provide scientific decision support for agricultural irrigation. Through rigorous
comparison of different models, we identified the optimal combination to improve the model's
robustness and accuracy. Our experimental results reveal that multi-model fusion exhibits higher
accuracy and stability in precipitation prediction compared to a single model.

Our study further validates the substantial advantages of multi-model fusion in enhancing
prediction accuracy and emphasizes the critical role of integrating data from multiple sources for
optimal model performance. By furnishing more reliable predictive information for agricultural
irrigation decision-making, this study introduces new methodologies and ideas for enhancing
agricultural water use efficiency and addressing the challenges posed by climate change.

In terms of innovations, this study leverages a multi-model fusion algorithm grounded in long
and short-term memory networks, and integrates multi-source data to offer a comprehensive and
reliable solution for precipitation prediction. This approach provides valuable insights for future
similar studies and contributes to the advancement of agricultural water management practices.

Keywords: Precipitation Prediction, LSTM, SVM, CEEMDAN, Agricultural Irrigation

1 INTRODUCTION

In recent years, precipitation forecasting has been a challenging issue in the field of meteorology
due to its complexity and uncertainty caused by multiple factors. Traditional forecasting methods
rely on statistics and dynamics, but the development of artificial intelligence and big data has brought
new opportunities for precipitation forecasting. Models based on Support Vector Machine (SVM) and
Random Forest algorithms have shown strong capabilities, providing significant support for
agriculture, water resource management, and disaster prevention and control. Recently, neural
networks based on deep learning technologies, especially Long Short-Term Memory (LSTM)
networks, have performed exceptionally well in precipitation forecasting [1]. This paper explores
LSTM-based precipitation forecasting methods, including basic LSTM models, SVM-LSTM, LSTM

with multi-head attention mechanisms, and LSTM after Complex Empirical Mode Decomposition
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with Adaptive Noise (CEEMDAN). We also investigate the application of Convolutional LSTM
methods, combining Convolutional Neural Networks (CNN) with LSTM to comprehensively model

spatiotemporal information, potentially enhancing forecasting performance further. In conclusion,
deep learning methods provide new insights for precipitation forecasting, particularly in the realm

of daily precipitation forecasting, which warrants further research and exploration.

2 SOURCES AND CLEANSING OF DATA

2.1 Sources and characteristics of data

For the station data, we used the precipitation observation data collected at the Ya'an rainfall
station (No. 60612000) and combined it with the latitude and longitude coordinates of the point. This
information was organized through a script combined with the nc data of the coordinate point to

obtain a multifactor dataset, which was then used for training and testing on multiple coupled models.

Table 1: Meteorological data of Ya’an, 2013/7/30-2022/12/31

Date Rainfall Temperature Humidity
2013/07/30 7.80 22.46 0.12
2013/07/31 2.63 21.01 0.13
2022/12/27 0.00 25.22 0.39
2022/12/28 0.00 23.04 0.42

2.2 Data cleansing

When cleaning time series data, common methods include handling missing values (such as
filling or deleting missing data), dealing with outliers (such as correcting or removing outlier data
points), removing duplicate data, smoothing data (such as filtering or averaging), adjusting
timestamp formats (such as unifying time units or time zones), handling abnormal timestamps (such
as adjusting or marking abnormal timestamps), data type conversion (such as converting text data to
numerical data), and data normalization (such as scaling data to specific ranges or standardizing
distributions). These methods aim to improve data quality and accuracy, providing a reliable data

foundation for subsequent analysis and modeling.

3 MODEL SELECTION AND METHODOLOGY

3.1 LSTM (Long Short-Term Memory) model

LSTMs address the limitations of traditional RNNs with long sequence data, which struggle to
capture complex dependencies across multiple time steps due to gradient vanishing or explosion

issues. LSTMs solve this with a gating mechanism, effectively handling long-term dependencies.
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Fig.1: Structure of LSTM network

Input Gate: The input gate allows the model to selectively receive new information. This is done
by using a sigmoid activation function to control the weight of the input information and a tanh
activation function to determine new candidate values [2]. This mechanism allows the LSTM to
selectively update its internal state and thus be more flexible in adapting to different input patterns.

Input Gate:
ir = o(Wilxy, he—q] + by) €Y

Forget Gate: Determines which past information should be forgotten by using a sigmoid
activation function. This allows the LSTM to retain important information while discarding less
relevant data, improving memory performance.

Output Gate: Controls the output of the current time step using sigmoid and tanh activation
functions, enabling selective output of the internal state. This helps the LSTM adapt to different
prediction tasks by focusing on essential information [3].

Oblivion Gate:

fe= U(Wf[xt: he_q] + bf) @)
Output Gate:

0y = U(Wf[xt' he_1] + bo) 3

LSTM's gating mechanisms excel at capturing long-term dependencies in time series data,
making it highly effective in various applications. In precipitation forecasting, LSTM accurately
captures spatio-temporal precipitation characteristics, improving forecast accuracy significantly.
Future studies will explore leveraging LSTM properties and enhanced methods to better predict

approaching precipitation and address flash flood challenges more effectively [4].

3.2 BiLSTM model

BiLSTM (Bidirectional Long Short-Term Memory) is a deep learning model used for time series
prediction, and it offers several clear advantages over traditional LSTM (Long Short-Term Memory)
models. Firstly, BILSTM can simultaneously consider past and future context information, enabling
a more comprehensive capture of patterns and trends in time series data, thereby enhancing
prediction accuracy and stability. Secondly, BILSTM is more flexible in modeling time series data, as
it can adapt to sequences of different lengths and structures, showcasing stronger generality and
adaptability [5]. Additionally, the introduction of bidirectional structure in BILSTM makes it easier
to avoid gradient vanishing or exploding issues compared to unidirectional LSTM models,

facilitating the training of deeper models. as shown in the following figure.
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Fig.2: Structure of BiLSTM network
3.2 Muti Head Attention

Attention Mechanism (AM) in deep learning mimics human visual and cognitive systems,
allowing neural networks to focus on relevant input data parts, enhancing model performance and
generalization. It automatically learns and prioritizes crucial information in the input [5].

Multi-head attention extends AM by enabling different weight distributions in various attention
subspaces. It employs multiple attention heads, each learning a distinct weight matrix. These heads

produce weighted outputs, combined linearly to obtain the final multi-head attention output.
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Fig.3: Multi-attention mechanism network structure

Introducing multi-head attention into LSTM models helps enhance the model's ability to capture
long-term dependencies, increases flexibility in representing different features, alleviates attention
bottlenecks when processing large amounts of information, and improves the model's interpretability
and explainability by observing the parts each head focuses on, aiding in a deeper understanding of

the model's workings and decision-making processes.

3.3 SVM

SVMs are mainly used in linear separability problems where the input data and the learning
objective are given: each sample of the input data contains multiple features and thus forms a feature
space, while the learning objective is a binary variable representing the negative class and the positive
class [6].

If there exists a decision boundary in the feature space where the input data are located, the
Hyperplane Separate the learning objectives by positive and negative classes and make the point-to-
plane distance of any sample greater than or equal to one:
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a;j + (aij — Anax) X f(9)
;= 4
“ {aij+(amin—aij)xf(9) )
_ 6Y.d?%;
P=1-—roD )

Then the classification problem is said to be linearly differentiable and the parameters are the
normal vector and the intercept of the hyperplane, respectively [7].
The decision boundary that satisfies this condition actually constructs 2 parallel hyperplanes as

interval boundaries to discriminate the classification of the samples:
wiX;+b=>4+1 => y, = +1 (6)
wiX;+b< -1 <=y, =-1 (7
In the SVM-MutiHeadAttention-LSTM model, SVM is mainly responsible for binary
classification of precipitation sequences, defining daily precipitation greater than 0.1 mm as a rainy

day and vice versa as a sunny day. Such a binary classification task helps to transform complex

precipitation patterns into simpler judgement problems.

S Margin=2/yww

Fig.4: SVM binary classification result map

3.4 Ceemdan

CEEMDAN is introduced into the time series prediction model to handle the data's nonlinearity
and non-stationarity more effectively. It is an improved empirical mode decomposition method that
decomposes nonlinear and non-stationary time series, simplifying complex data into manageable
components. This enhances the model's ability to model time series data and improve prediction
accuracy. By incorporating CEEMDAN, the model captures dynamic time series characteristics better,
enhancing overall performance and robustness [8]. The principle of modal decomposition is shown

below:
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Fig.5: Schematic diagram of collective empirical modal decomposition

Let Ei(.) be the ith eigenmode component obtained after EMD decomposition, the jth

eigenmode component obtained by CEEMDAN decomposition is ci(t) , 9/ is the Gaussian white
noise signal satisfying the standard normal distribution, j =1, 2, 3, ... N is the number of times of
adding white noise, ¢ is the standard table of white noise, and y(t) is the signal to be decomposed.
The steps of CEEMDAN decomposition are as follows:

Gaussian white noise is added to the signal to be decomposed y(t) to obtain the new signal
y(t) + (—1)7e97(t) , where q=1,2. EMD decomposition of the new signal is performed to obtain the

first order eigenmode component C1.
E(y(®) + (-7 (©) = ¢/ (©) + 7 (8)

The 1st eigenmode component of the CEEMDAN decomposition is obtained by averaging over

the resulting N modal components:
= _Lon
GRS (9)
Calculate the residuals after removing the first modal component:

() = y(®) - G, (® (10)

Add positive and negative paired Gaussian white noise in 7;(t) to get a new signal, and use the
new signal as a carrier for EMD decomposition to get the first-order modal component Dlj , which
can get the 2nd eigenmode component of CEEMDAN decomposition:

N

— 1 :
CO=5) Di® (11)

j=1
Calculate the residuals after removing the second modal component:
r2(t) = 1 (8) — G (t) (12)

Repeat the above steps until the residual signal obtained is a monotonic function and cannot be
further decomposed, the algorithm ends. At this point the number of eigenmode components

obtained is K. The original signal y(t) is decomposed as:

y(©) = 2K, G (O + 1 () (13)
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3.5 Conv LSTM

Conv LSTM, introduced in the research paper "Convolutional LSTM Network: a Machine
Learning Approach for Precipitation Nowcasting," stands out as a powerful tool for handling gridded
precipitation data and forecasting future precipitation events. Its notable effectiveness lies in its
ability to model spatio-temporal relationships accurately, a task that traditional time series models
often struggle with when dealing with gridded precipitation data [9]. Unlike these conventional
models, ConvLSTM integrates Convolutional Neural Networks (CNN) and Long Short-Term
Memory Networks (LSTM), enabling it to comprehensively capture and process spatio-temporal
information. This comprehensive approach significantly improves the accuracy and timeliness of

precipitation predictions.
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Fig.6: Schematic diagram of ConvLSTM

ConvLST M,

4 EXPERIMENTS AND ANALYSIS OF RESULTS

4.1 LSTM(BiLSTM) training and prediction results
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Fig.7: LSTM & BiLSTM prediction results

BiLSTM's enhanced predictive capability stems from its adeptness at synthesizing insights from
both past and future data points, a feat that traditional LSTM models struggle to match. This
superiority is attributed to BiLSTM's bidirectional information flow and advanced memory
mechanisms, enabling it to capture nuanced sequence dependencies crucial for precipitation
forecasting [10]. Furthermore, the incorporation of fusion techniques with multiple models alongside
BiLSTM promises to elevate prediction accuracy to new heights, paving the way for more reliable

and nuanced precipitation forecasts.
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4.2 MutiheadAttention-LSTM(BiLSTM) training and prediction results

LSTM Model for Rain (Last Year)

BILSTM Model for Rain with MutiheadAttention Classification (Last Year)
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Fig.8: MutiheadAttention-LSTM prediction results

From the prediction results, it can be seen that the model with the introduction of multihead
attention mechanism performs better than simple LSTM or BILSTM models. Moreover, the prediction
results from the multihead attention mechanism combined with BiLSTM are better than those
combined with LSTM [11]. However, there is still room for improvement in prediction accuracy,
especially in terms of classifying rainy and sunny day data. Therefore, the next step involves using
SVM for binary classification to separate rainy and sunny day data, followed by separate time series

predictions for each. This will help improve the model's prediction capabilities and accuracy [12].

4.3 SVM-MutiheadAttention-LSTM(BiLSTM) training and prediction results
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Fig.9: SVM-MutiheadAttention-LSTM prediction results

Combining the SVM binary classification model with a multi-attention mechanism-based
temporal prediction model has shown good performance, enhancing the prediction capabilities for
both sunny and rainy weather, reducing data interference, and improving time series feature
extraction. In the future, signal decomposition can be explored to further enhance the predictive
performance of the model. By integrating SVM with MutiHead Attention-LSTM, the model is able to
capture the dynamics in time-series data while classifying sunny and rainy weather to better
understand and predict precipitation events [13]. This combination helps improve the robustness of
the model, enabling it to adapt more flexibly to different meteorological conditions and time series
variations, providing more reliable support and reducing the risk of flash floods. In future
experiments, we will further validate the performance of this model in precipitation prediction,

aiming to provide more innovative and practical solutions.
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4.4 SVM- MutiheadAttention-CEEMDAN training and prediction results
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Fig.10: Prediction results of the first signal obtained after modal decomposition of precipitation data

Integrating CEEMDAN into BiLSTM greatly enhances the model's capability to address the
complex time-frequency characteristics, noise, and nonlinear structures inherent in data. The superior
performance observed in the SVM-Mutihead Attention-CEEMDAN-BIiLSTM model compared to the
SVM-Mutihead Attention-CEEMDAN-LSTM model highlights this enhancement. CEEMDAN's
decomposition into intrinsic modal functions (IMFs) facilitates noise reduction and crucial feature
extraction, complementing BiLSTM's bidirectional learning approach. This combined framework
significantly improves the model's understanding of spatio-temporal relationships and predictive

accuracy, particularly in challenging environments with diverse sources of noise.

4.5 ConvLSTM training and prediction results

ConvLSTM stands out due to its advanced capabilities in processing and predicting precipitation
forecasts, a step above traditional LSTM models. The integration of convolutional operations
empowers ConvLSTM to extract nuanced temporal and spatial features concurrently, resulting in a
thorough understanding of intricate patterns and trends inherent in time series data. Additionally,
ConvLSTM excels in capturing complex spatio-temporal relationships, especially crucial when
dealing with gridded precipitation data. This refined modeling approach not only enhances
prediction accuracy but also ensures robust and stable performance, marking a significant leap
forward in the realm of precipitation forecasting technology #**##9™%-
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Fig.11: Precipitation forecast frame

5 MODEL EVALUATION AND PERFORMANCE COMPARISON

5.1 Model assessment methodology

The performance of an LSTM model can be evaluated using a variety of metrics and methods.

Commonly used evaluation metrics include Mean Squared Error (MSE), Mean Absolute Error (MAE),
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Root Mean Squared Error (RMSE), and correlation coefficient. Additionally, comparing the predicted
values with the actual values through scatter plots or line graphs can provide visual insights into the
model's predictive performance. Furthermore, methods such as cross-validation, time series cross-
validation, or hold-out validation can be used to assess the model's generalization and robustness

across different datasets #&*#HRE

5.1.1 Mean Squared Error (MSE)

Definition:MSE is the average of the squares of the differences between predicted and actual
values.

Advantages:It is sensitive to outliers and is a widely used indicator for evaluating regression
models.

Calculations:
1
MSE = —Z, (i = 90)* (14)
5.1.2 Root Mean Squared Error (RMSE)

Definition:RMSE is the square root of MSE and is used to normalise the magnitude of the error

Calculations:
RMSE = VMSE (15)
5.1.3 Mean Absolute Error (MAE)

Definition:MAE is the average of the absolute values of the differences between the predicted
and actual values.
Calculation method.
1 n
MAE =23 ly;= 3 (16)
n i=1

5.1.4 Coefficient of Determination.R?)

Definition:R2 indicates the extent to which the model explains the variance of the target variable.
The value ranges from 0 to 1, with closer to 1 indicating a better model.
Calculations:
I, O — 9)*

RP=1-—r—"0
G Ok

17)

5.1.5 Relative bias (BIAS)

Definition: Relative deviation is the average of the differences between predicted and actual
values, and represents the average deviation of the predicted value relative to the actual value.

Calculations:

n
1
BIAS =~ > (= 9) (18)
i=1
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5.2 Performance comparison

Table 2: performance evaluation indicators

Model Name MSE BIAS RMSE MAE R"™2
LSTM 12.6898 0.3458 3.5623 0.05683 0.1486
MUTIHEADATTENTION-LSTM 12.3633 0.3064 3.5161 0.04895 0.2089
SVM-MUTIHEADATTENTION-LSTM 10.9677 0.2485 3.3117 0.03965 0.2765
SVM-MUTIHEADATTENTION-CEEMDAN-LSTM 8.1253 0.1904 2.8505 0.03564 0.4955
Bilstm 12.2847 0.2745 3.5050 0.05054 0.2064
MUTIHEADATTENTION-Bilstm 12.2819 0.2286 3.5046 0.04256 0.3589
SVM-MUTIHEADATTENTION-Bilstm 9.1314 0.1867 3.0218 0.02356 0.5456
SVM-MUTIHEADATTENTION-CEEMDAN-Bilstm 7.5145 0.1564 2.7413 0.01958 0.6574

By coupling multiple models with different advantages based on the data and model features of
a single model, overall prediction capability can be enhanced and prediction errors reduced. It is
believed that accurate precipitation prediction through coupled models can provide data support
and pre-planning for agricultural irrigation, ensuring the normal operation of agricultural
production and the healthy growth of agricultural products. The specific relationship is shown in the
table below:

Tabel 3: Relationship between water use for agricultural irrigation and precipitation

Conversion table of precipitation h to irrigation v per hectare al, or a2 per acre

Calculation formula

v = ha,

v = ha,

v = hay

v = ha,

a, = 10000m?

a, = 666.7m?

a, = 10000m?

a, = 666.7m?

Precipitation: h

Irrigation per hectare

Irrigation per acre

Precipitation: h

Irrigation per hectare

Irrigation per acre

3

3

3

3

mm m m mm m m
1 10 0.67 25 250 16.67
2 20 133 30 300 20.00
3 30 2.00 35 350 23.33
6 CONCLUSION

We have integrated BiLSTM, SVM, CEEMDAN, and Multihead Attention technologies to
develop a sophisticated precipitation prediction model. Through comparative analysis of various
coupling methods, we have identified the BILSTM+SVM+CEEMDAN+Multihead Attention approach
as highly advantageous for precipitation forecasting.

This coupling method effectively leverages BiLSTM's bidirectional learning and time-series
processing capabilities to capture spatiotemporal relationships and long-term dependencies, thus
enhancing model accuracy. Additionally, incorporating SVM and Multihead Attention mechanisms
enhances model flexibility and robustness. The introduction of CEEMDAN's time-frequency
decomposition technology further improves the model's adaptability and generalization to time-
series data.

We strongly recommend adopting the BiLSTM+SVM+CEEMDAN-+Multihead Attention
approach for precipitation forecasting, anticipating significant advancements in meteorological
research and applications. Furthermore, integrating ConvLSTM technology has substantially
improved the efficiency of handling radar echo data, offering additional avenues for enhancing

precipitation prediction accuracy.
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