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Abstract: Accurate prediction of reservoir parameters is the core of reservoir evaluation and
development plan optimization, but traditional methods are difficult to effectively integrate
multi-source heterogeneous data, depict complex spatial heterogeneity and ensure physical
consistency. Therefore, this paper proposes a multimodal transformer graph neural operator
physical constraint network (MT-GNO-PCN) to realize the joint high-precision prediction of
reservoir parameters. Firstly, the multimodal transformer is used to integrate seismic attributes,
logging curves and geological interpretation data to construct a unified semantic feature
representation; Then the map neural operator is used to learn the continuous space mapping
function and flexibly model the distribution law of reservoir parameters in irregular geometry
and complex geological structure; Finally, the physical constraint loss term based on the
relationship between Darcy's law and rock physics is introduced to enhance the physical
rationality and generalization ability of the prediction results. Experiments on real and synthetic
reservoir data sets show that the average mean square error of this method is about 46% lower
than that of the traditional convolutional neural network and 33% lower than that of the model
using only multimodal transformer in the prediction of porosity, permeability and water
saturation; The average determination coefficient (R?) is 0.89, and the error increase is
controlled within 165% under 15% noise interference, which is significantly better than the
existing comparison model. The framework provides a new way for reservoir intelligent
modeling driven by multi-source data with high accuracy, strong robustness and physical
consistency.
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1. INTRODUCTION

Reservoir parameter prediction is a key basic problem in oil and gas development,
underground energy utilization and related engineering fields. Its results directly affect the
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accuracy of reservoir evaluation, development scheme design and production performance
prediction. Porosity, permeability, water saturation and other parameters not only reflect the
physical properties of the reservoir, but also play a key role in numerical simulation and
engineering decision-making [1],[2],|3]. However, because the underground reservoir structure
is complex, heterogeneous, and the available observation data has the characteristics of multi-
source heterogeneity and significant difference in resolution, the realization of high-precision,
stable and reliable reservoir parameter prediction has always faced great challenges.

Traditional reservoir parameter prediction methods mainly rely on seismic inversion and
logging interpretation technology, and estimate parameters by establishing the mapping
relationship between seismic response and rock physical properties [4],[5]. Such methods
usually have clear physical meaning, but in practical applications, they often rely on strong
assumptions or empirical models, which are sensitive to noise and geological complexity, and
are difficult to effectively deal with strong nonlinear relationships and complex spatial changes
[6],]7]. At the same time, with the exploration and development entering a high difficulty stage,
the scale and complexity of multi-source data (such as multi-attribute seismic, logging curves
and geological interpretation results) are increasing, and the ability of traditional methods in
the collaborative utilization of multi-source information is gradually showing its shortcomings
[81.191,[10],[11].

In recent years, deep learning technology has shown significant potential in the field of
reservoir modeling and parameter prediction. The method based on convolutional neural
network and sequence model can automatically extract high-order features from the data, which
improves the prediction accuracy to a certain extent [12],[13],[14]. However, most of the
existing deep learning models focus on single data source or simple feature splicing, and lack
of modeling the internal relationship between multi-source data [15],[16],[17]. In addition,
conventional neural networks usually rely on fixed grid structure or local receptive fields in
spatial modeling, which is difficult to effectively describe the non local spatial dependence and
complex geological structure that are common in reservoirs, thus limiting the generalization
ability of the model in real engineering scenarios.

On the other hand, the pure data-driven model often iGNOres the basic constraints of
underground physical processes, and is prone to produce physically unreasonable prediction
results when the training data is sparse or the distribution changes [18],|19]. This problem is
particularly prominent in the joint prediction of reservoir parameters. There is often a clear
physical or petrophysical coupling relationship between different parameters. If there is no
effective constraint, although the model fits well in the statistical sense, it is difficult to ensure
the engineering availability. Therefore, how to introduce physical mechanism to improve the
reliability of prediction results while maintaining the ability of deep learning and flexible
modeling has become an important direction of current research.

Based on the above background, this paper believes that it is necessary to promote the
development of reservoir parameter prediction methods from three levels: first, fully excavate
the complementary information among seismic, logging and geological data through
multimodal learning mechanism to achieve higher-level feature fusion; Second, the idea of
graph modeling is introduced to describe the nonlocal spatial correlation of reservoir parameters
from the perspective of continuous space; The third is to integrate the reservoir seepage and
petrophysical laws into the model training process to enhance the physical consistency and
generalization ability of the prediction results. On this basis, this paper proposes a joint
prediction model of reservoir parameters based on multimodal transformer graph neural
operator physical constraint network, which aims to build a unified framework with expression
ability, spatial modeling ability and physical constraint ability.

The research goal of this paper is to systematically improve the accuracy, stability and
physical rationality of joint prediction of reservoir parameters. The main contributions are as
follows: the deep semantic fusion of multi-source reservoir data is realized through multimodal
transformer; The continuous mapping relationship of reservoir parameters in complex spatial

71
Ding et. al, ISTAER. 2604., 03 Feb 2026 https://doi.org/10.71451/ISTAER2604



https://doi.org/10.71451/ISTAER2604

structure is described by graph neural operator; By introducing the physical constraint network,
the reservoir seepage and petrophysical mechanism are explicitly embedded in the model
optimization process. The experimental results show that the performance of the proposed
method is better than that of the existing methods in a number of reservoir parameter prediction
tasks, which provides a new and effective way for intelligent modeling under complex reservoir
conditions.

2. RELATED WORK

As one of the core issues in oil and gas exploration and development, the research progress
of reservoir parameter prediction has changed from traditional physical interpretation method
to data-driven intelligent method. The early prediction of reservoir parameters mainly depends
on seismic inversion and logging interpretation technology [20],[21]. Seismic attributes, wave
impedance or logging curves are mapped to key parameters such as porosity and permeability
through physical equations and empirical formulas [22],]23]. These methods are usually based
on geophysical inversion theory, such as linear inversion, backward propagation and model
matching algorithm. The parameter field is estimated by fitting seismic observation with
disturbance model. In addition, the log based interpretation method uses empirical models or
statistical regression methods to estimate parameters through density, acoustic impedance and
other measured data [24],[25]. Although these methods have a solid physical foundation, they
are often inadequate in the face of complex geological bodies, nonlinear response and high
noise data, and it is difficult to give consideration to accuracy and stability.

With the improvement of computing power and the increase of data scale, deep learning
method has been widely concerned in the field of reservoir modeling. Compared with
traditional regression methods, convolutional neural network (CNN), recurrent neural network
(RNN) and other models can automatically learn the nonlinear mapping relationship from
massive data, and gradually apply to porosity prediction, permeability estimation, lithology
classification and other tasks. Especially for the spatial structure learning of 3D seismic volume
and logging data, the CNN based method can capture local patterns through multi-layer feature
extraction, but its receptive field is limited and it is difficult to effectively characterize the long-
distance spatial dependence [26],27]. Recent studies have tried to introduce attention
mechanism to alleviate this problem, for example, combining the advantages of transformer
structure in sequence tasks, global feature learning for multi-channel seismic attribute
sequences. The multimodal transformer method realizes the information interaction between
different data sources through the cross modal attention mechanism, and shows stronger
expression ability in image curve fusion and temporal spatial semantic alignment [28],[29].
However, the existing transformer research mostly focuses on the mode fusion level, and the
modeling of spatial continuity and geological structure complexity is still relatively lacking,
which is difficult to fully capture the non local geological connection within the reservoir.

Graph neural network (GNN) and its derivative operators have become an important tool
for spatial data modeling in recent years, and have made remarkable achievements in social
network analysis, molecular graph modeling and other fields. By using graph structure to
represent spatial sample points and their adjacency, graph neural network can explicitly
describe the spatial dependence between nodes, and realize information aggregation through
message passing mechanism [30]. In geoscience problems, graph neural network is used for
lithology prediction, stratigraphic division and 3D model reconstruction, which can be flexibly
modeled under irregular sampling conditions. However, the traditional discrete message
passing mechanism of GNN has some limitations in dealing with continuous media or cross
scale coupling. Therefore, as a model that can directly approximate the continuous space
operator, the graph neural operator has stronger function mapping ability and scale
generalization performance by learning the kernel function defined by spatial coordinates and
neighborhood relations, which provides a new idea for the spatial prediction of complex
reservoir parameters.
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At the same time, it has become an important research direction in recent years to integrate
the physical laws into the deep learning framework to enhance the model interpretability and
physical consistency. Physical constrained network embeds physical equations such as partial
differential equations and conservation laws into the network training process in the form of
loss terms or structural modules, so that the model can meet the basic physical laws while fitting
the data. This method shows good generalization ability and prediction stability in the fields of
fluid mechanics, rock physics inversion and earth system simulation. However, in the
application of reservoir parameter prediction, the research on physical constraints mostly
focuses on the constraints of a single physical quantity, such as pressure field or porosity, and
the system modeling of complex physical coupling relationship in the joint prediction task of
multiple parameters is still less involved.

To sum up, traditional physical interpretation methods and statistical regression methods
have bottlenecks in accuracy and generalization performance. Deep learning, especially
transformer and graph neural network, has obvious advantages in feature expression and spatial
structure modeling, while physical constraint methods show potential in improving physical
consistency and reliability. However, the existing research generally lacks an overall framework
that can handle multimodal data fusion, complex spatial relationship modeling and physical
consistency constraints, which is the original intention of this paper to propose multimodal
transformer graph neural operator physical constraint network.

3. PROBLEM DEFINITION AND OVERALL FRAMEWORK

The joint prediction of reservoir parameters aims to use multi-source heterogeneous
observation data to carry out unified and collaborative high-precision inversion of multiple key
physical parameters in underground reservoirs. Set the study area as a three-dimensional space
domain:

QcR3 €Y)
In this region, reservoir parameters can be expressed as continuous function fields:
y&) = [¢(x), k(x), Sw (), Vsn ()], x € 0 (2)

Where ¢ is porosity, k is permeability, S,, is water saturation, and Vg, is argillaceous
content. The goal of joint forecasting is to build a mapping function:

F:X>Y (3)

It can approximate the real reservoir parameter distribution Y in the multimodal input
data space X.

The multimodal input data is composed of a variety of observation and interpretation
results, which are recorded as:

X = {X(S),X(W),X(g)} (4)

Where X&) € RNsXTXFs  represents seismic attribute sequence, XMW) € RNwXDXFw
represents logging curve data, and X9 € RNo*fs represents geological prior or structural
attribute. Different modes have significant differences in resolution, sampling method and
physical meaning, which makes it difficult for the traditional single model to describe the time-
space correlation and cross modal complementary information at the same time.

To solve the above problems, this paper proposes a joint modeling framework of
multimodal transformer graph neural operator physical constraint network (MT-GNO-PCN).
The framework consists of three progressive modules: multimodal feature representation layer,
spatial continuous operator modeling layer and physical consistency constraint layer. The
model realizes the unified mapping from multi-source data to reservoir parameter field through
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end-to-end mode.

In the overall framework, firstly, different modal data are mapped to a unified hidden space
representation. Let the original input of mode m be X™, and its embedding is expressed as:

H™ = Embed™ (x(m) (5)

Wherein, Embed(m)(-) is the encoding function of modal correlation. Then, a cross
modal attention mechanism is constructed through the multimodal transformer to realize the
information interaction at the feature level. Its output can be expressed as:

H = Transformer(H®), HW), H¥)) 6)

It not only contains the high-order semantic features of each mode, but also explicitly
models the dependencies between different observations, providing a unified input for
subsequent spatial modeling.

On this basis, in order to characterize the continuous variation of reservoir parameters in
space, graph neural operator (GNO) is introduced to map the transformer output at operator
level. The study area is discretized into a graph structure:

G=W,8) (7)

The node set V represents spatial sampling points, and the edge set £ represents spatial
adjacency or Geological Association. The graph neural operator realizes the mapping from the
input function to the output function by learning the operator kernel function Ky:

yi = z Ko (xi1,%;) H; (8)
JEN(D)

Where N (i) is the neighborhood of node i. This form breaks through the limitations of
the traditional point prediction model, and makes the model have the generalization ability for
different grid scales and spatial structures.

In order to enhance the physical interpretability and prediction stability of the model, the
physical constraint network is further introduced in the training phase. Taking Darcy's law as
an example, its physical constraints can be formalized as:

V- (k(OVp(X) = qx) 9)

Where p is the pressure field and q is the source sink term. Convert it to physical
residual loss:

1 -
Lony = —f I V- (kVp) —q IIZdx (10)
1 Q1Jq
Together with data-driven loss L 44, it forms a joint optimization goal:

L= Ldata + ALphy (11)

Where A is the weight coefficient, which is used to balance the data fitting and physical
consistency.

Table 1 shows the main variables and their dimension settings in this joint prediction model
to illustrate the corresponding relationship between multimodal input and output parameters.
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Table 1. Variable description of multimodal input and reservoir parameter output

Module Variable symbol Physical meaning Dimension
Seismic mode X© Seismic attribute body 128 X 256 X 6
Logging mode Xw) Logging curve 50 X 200 X 5
Geological mode X@ Tectonic/facies zone properties 128 x 4
Output parameters y Reservoir parameter vector 128 x 4

Through the above problem definition and overall framework design, this paper realizes
the unified mapping from the multi-modal observation data to the continuous field of reservoir
parameters, which lays the theoretical and structural foundation for the subsequent modular
modeling and experimental verification.

4. MULTIMODAL TRANSFORMER REPRESENTATION LEARNING
MODULE

In the joint prediction task of reservoir parameters, there are significant differences in the
physical meaning, sampling scale and statistical distribution of multi-source data. Direct
splicing input often weakens the key information and introduces noise interference. Therefore,
this study first constructs independent feature representation for different modal data, and
achieves deep semantic alignment and fusion through multimodal transformer in the unified
hidden space. Let the mode input of type m be X™ | and its initial characteristic
representation is completed by the mode specific encoder:

20m = £ (X)), m € {s,w, g} (12)
Where s,w, g are seismic, logging and geological attribute modes respectively, and fenT)
is composed of linear mapping and nonlinear activation function to complete dimension
alignment and feature compression.

Considering the sequence characteristics of seismic attributes in the time or depth
dimension, the encoding process adopts the location embedding mechanism, and the spatial
location information is explicitly introduced into the feature representation

7() = 7() 1 p(® (13)

Where P®) is alearnable position coding matrix. Logging and geological attribute modes
focus on local lithology and macro structure information, and their embedding forms are
mapped to the same dimension d, so as to build an interactive representation space across
modes.

On this basis, the multimodal transformer realizes information fusion through the cross
modal attention mechanism, and its core is to simultaneously model the internal correlation and
dependency between modes. For any two modes m and n, the cross modal attention
calculation form is:

(14)

QM) (KT
Attnm@n(Q(m), K™, V(")) = softmax <—> U

Vd

The query matrix Q™ is derived from the target modal features, the key and value matrix
K™, v are derived from the auxiliary modes. Through the multi head attention mechanism,
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the above process is extended to:

H
MHA(Z) = Attn™(2) (15)
D

To capture the multi-scale correlation features in different subspaces.

During the stacking process of transformer layers, the model updates the multimodal
feature representation layer by layer, and finally outputs a unified high-dimensional fusion
representation:

H = Transformeryy (29, 2", 29)) (16)

It not only retains the key information of each mode, but also adaptively adjusts the
contribution of different data sources through attention weight, so that the model can maintain
stable performance in the case of uneven data quality or missing information.

In order to quantitatively explain the dimensional changes and information gain before and
after multimodal feature fusion, table 2 shows the feature dimension configuration of different
modes in the transformer representation learning module in typical experiments.

Table 2. Feature dimension setting of multimodal transformer representation learning
module

Modal type Original feature dimension Embedded dimension d Transformer Output dimension
Seismic attribute 24 128 256
Logging curve 6 128 256
Geological attribute 4 128 256
Fusion representation - - 256

It can be seen from table 2 that different modes are mapped to the unified embedding space
before entering the transformer, and the output fusion features significantly enhance the cross
modal semantic expression ability while maintaining the same dimension. The high-
dimensional fusion feature is then used as the input of the continuous function representation
to provide a prior expression with sufficient physical and statistical information for the
subsequent graph neural operator module.

Through the above multimodal transformer representation learning module, the model
realizes the deep-seated joint modeling of multi-source reservoir data, and lays a high-quality
feature foundation for the spatial continuous prediction and physical constraint optimization of
reservoir parameters.

5. GRAPH NEURAL OPERATOR SPATIAL CORRELATION MODELING

In the joint prediction of reservoir parameters, the underground medium usually presents
the characteristics of strong heterogeneity and complex spatial structure. The spatial
distribution of reservoir parameters not only depends on local neighborhood information, but
also is affected by non local factors such as faults, facies zones and sedimentary structures. In
order to describe this complex spatial correlation, based on the multimodal transformer
representation learning, this paper introduces the graph neural operator (GNO) to model the
continuous spatial mapping of reservoir parameters. This method breaks through the limitations
of the traditional grid dependent neural network, and enables the model to maintain good
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generalization ability under different spatial resolution and structure conditions.

Firstly, the study area Q is discretized into a spatial graph structure with physical and
geometric significance

G=W,EW) (17)

Where the node set V = {v;})., represents the spatial sampling point or grid cell center,
the edge set £ describes the spatial adjacency relationship between nodes, and W is the edge
weight set, which is used to describe the physical or geometric correlation strength between
nodes. For any node v;, its corresponding spatial coordinates are marked as x; € R3, and the
node features are composed of the multimodal fusion representation H; obtained in the
previous chapter.

The Euclidean distance and geological constraint information are comprehensively
considered in the construction of edge, and its weight is defined as:

Il x; —x; 115
Wij = exp <—1—”> “1ij (18)

o2

Where o is the distance scale parameter, and 7;; is the geological correlation coefficient,
which is used to reflect the consistency of facies belt or fault barrier effect. In this way, the
graph structure not only encodes the spatial geometric proximity, but also incorporates the prior
information of reservoir structure.

After constructing the spatial map, graph neural operator is introduced to learn the function
mapping relationship of reservoir parameters. Unlike traditional graph neural networks, graph
neural operators are designed to approximate continuous operators:

Go: H(Q) - Y(Q) (19)

Where H (Q) represents the input characteristic function space and Y(£1) represents the
reservoir parameter function space. Its discrete form can be expressed as:

i = Z Ko (%, %) H; +b (20)
JEN (D)

Where NV (i) is the neighborhood set of node i, Ky is the learnable operator kernel
function, and b is the bias term. This kernel function is usually parameterized by multi-layer
perceptron:

KQ(XL',X]') = MLPg([Xi - Xj, WU]) (21)

Thus, the joint modeling of spatial position difference and edge weight information is
realized.

By stacking multi-layer graph neural operators, the model can gradually expand the
receptive field and effectively capture the nonlocal spatial dependence. The [-tier update form
is:

I+1
HO Y =0 D () (22)
JEN (@)

Where o(-) is the nonlinear activation function. This structure enables the model to
maintain the spatial continuity and have the ability to express complex geological structures.

In order to intuitively explain the settings and physical meanings of nodes and edges in the
graph neural operator module, table 3 summarizes the main elements of spatial graph modeling
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in this paper and their corresponding explanations.

Table 3. Description of modeling elements and physical meaning of reservoir space map

Figure elements Symbol Meaning description

Node v; Spatial sampling points/grid cells
Node characteristics H; Multimodal fusion feature

Edge eij Spatial association between nodes
Edge weight wij Distance and Geological Correlation
Operator kernel Ko Continuous mapping function

Through the above graph neural operator spatial correlation modeling, the model can
further learn the continuous spatial variation law of reservoir parameters on the basis of
multimodal features, effectively improve the depiction ability of complex geological structure,
fault influence and non local dependence, and provide key support for the subsequent
introduction of physical constraints and the realization of stable and reliable joint prediction.

6. PHYSICAL CONSTRAINT NETWORK AND JOINT OPTIMIZATION
STRATEGY

Although multimodal transformer and graph neural operator can effectively improve the
accuracy of reservoir parameter prediction, the pure data-driven model may still produce
physically unreasonable results in the area of sample distribution changes or data sparse. In
order to further enhance the reliability and generalization ability of the model in the actual
geological scene, this paper introduces the PCN, which explicitly embeds the reservoir seepage
and rock physical mechanism into the model training process, and guides the model to follow
the basic physical laws while meeting the observation data by constructing the physical
consistency loss function.

In the problem of reservoir seepage, the single-phase steady flow in porous media can be
described by Darcy's law and mass conservation equation, and its control equation is:

V- (k(x)VpXx) = q(x),x € Q (23)

Where k(X) is the permeability field, p(x) is the pressure field, and q(x) is the source
sink term. By substituting the permeability k and pressure P predicted by the model into the
above equation, the physical residual can be constructed:

Rx) =V-(kvp)—q (24)

The physical consistency loss function is defined based on this:

Ne
1

Ly =37 Y IRGD) I3 (25)
=1

Where {xi}iv:l is the set of constraint points sampled in the reservoir space. The loss term
can make the model output maintain reasonable seepage behavior in space by punishing the
prediction results that violate the physical equation.

In addition to the seepage mechanism, the empirical relationship of rock physics also
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provides important constraints for reservoir parameters. The relationship between porosity and
P-wave velocity is often approximated by Wyllie time average formula:
1 1-
16,10 »
vV |7
Where ¥}, is the longitudinal wave velocity, V¢ and V;, are the fluid and rock matrix

velocities, respectively. Based on this relationship, the physical consistency loss of rock can be
further constructed:

Ny
1 1 (¢, 1-
Lo = - E 15— — (B2 12 27)
rock Nr Vp,i Vf Vm
i=1

Thus, the physical coupling relationship between different prediction parameters is
constrained at the feature level.

In the training phase, data-driven loss and physical constraint loss are jointly optimized by
weighting. Data driven loss is in the form of mean square error:

N
1
Lowa =5 ) 19:=i 1B (28)
i=1

Where y; is the real reservoir parameter. The final joint loss function is defined as:
L= Ldata + /11['phy + AZLrock (29)

Where A; and A, are weight coefficients, which are used to balance the data fitting
accuracy and physical consistency constraints. The joint optimization strategy makes the model
pay more attention to the data distribution at the initial stage of training, and gradually
strengthen the physical constraints at the convergence stage, so as to obtain stable and
physically reasonable prediction results. In order to explain the setting and physical meaning of
each component in the joint loss, table 4 shows the loss function configuration in typical
experiments.

Table 4. Composition and weight setting of loss function in physical constraint network

Loss item Symbol Constrain objects Weight
Data loss Liata Observation value of reservoir parameters 1.0
Seepage restriction loss Loy Darcy equation 0.1
Petrophysical loss Lok Velocity porosity relationship 0.05

By introducing physical constraint network and joint optimization strategy, the model not
only ensures the prediction accuracy, but also significantly improves the physical consistency
of the results, effectively suppresses the phenomenon of non physical shocks and outliers, and
provides an important guarantee for the reliability of joint prediction of reservoir parameters in
practical engineering applications.

7. EXPERIMENTAL DESIGN AND RESULT ANALYSIS

In order to verify the effectiveness and generalization ability of the proposed multimodal
transformer graph neural operator physical constraint network in the task of joint prediction of
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reservoir parameters, systematic experiments were carried out on real and synthetic reservoir
data sets. The experimental area is covered with typical sandstone reservoir structure, including
multi-layer sedimentary units and transverse heterogeneity. The data set consists of three types
of multimodal inputs: 3D seismic attribute volume, logging curve data and geological
interpretation attributes, and takes porosity, permeability, water saturation and shale content as
joint prediction targets. The overall data is divided into training set, verification set and test set
according to the ratio of 7:2:1 to ensure the objectivity of model evaluation.

In terms of evaluation indexes, in order to comprehensively measure the prediction
performance of the model on different reservoir parameters, this paper uses the mean square
error (MSE), mean absolute error (MAE) and determination coefficient (R?) as quantitative
evaluation criteria, which are defined as follows [31],[32]:

N
1
MSE =+ Gi=7) (30)
i=1
1 N
MAE:NZ If/i—yi | (31)
i=1

Z ?I:l(}?i - }’i)z
> (= )2

Where y; and y; represent the real value and the predicted value respectively, and y is
the mean value of the real value. The above indexes evaluate the performance of the model
from the perspective of error amplitude, robustness and goodness of fit.

R2=1- (32)

According to the prediction performance of different models on the test set, figure 1 shows
the comparison relationship between the real value and predicted value of porosity prediction
results.

0401 o NN

0.351 A MM-Transformer
= MT-GNO-PCN

0.30 1

0.251

0.20 1

Predicted Porosity

0.0 0.1 0.2 03 0.4
True Porosity
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Figure 1. Comparison of porosity and permeability prediction results of different models
on the test set

The scatter distribution of CNN model is relatively scattered, especially in the high
porosity interval (>0.25), which obviously deviates from the ideal diagonal, indicating that its
ability to describe nonlinear reservoir characteristics is limited. The multimodal transformer
model has improved in the overall trend fitting, but there are still systematic deviations in the
local interval. In contrast, the prediction points of MT-GNO-PCN model proposed in this paper
are highly concentrated near the diagonal, and the dispersion of scattered points is significantly
reduced. Taking the test set as an example, the mean square error of porosity prediction is about
0.0026, which is about 46% lower than CNN model, and about 33% lower than the model using
only multimodal transformer, which directly reflects the synergy of multimodal feature fusion
and spatial operator modeling. Table 5 compares the overall performance of different methods
in the task of joint prediction of reservoir parameters.

Table 5. Performance comparison of different methods in reservoir parameter prediction
task

Model Porosity MSE Permeability MSE Water saturation MAE Average R?
CNN 0.0048 0.092 0.061 0.71
MM-Transformer 0.0039 0.075 0.053 0.78
MT-GNO 0.0032 0.061 0.047 0.84
MT-GNO-PCN 0.0026 0.048 0.039 0.89

It can be seen from the results that the traditional CNN model is at a low level in terms of
various indicators, with the mean square error of porosity of 0.0048, the mean square error of
permeability of 0.092, and the average R? of 0.71, which is difficult to effectively describe the
complex spatial variation characteristics of reservoir parameters. After the introduction of
multimodal transformer, the performance of the model is significantly improved, the prediction
errors of porosity and permeability are reduced to 0.0039 and 0.075, respectively, and the
average R? is increased to 0.78, indicating that the cross modal attention mechanism has
significant advantages in multi-source data fusion.

After the map neural operator (mt-GNO) is further introduced, the ability of the model in
spatial continuity modeling is enhanced, the prediction error of permeability is reduced from
0.075 to 0.061, and the average R? is increased to 0.84, especially in the high heterogeneous
region, showing a more stable prediction effect. The MT-GNO-PCN model proposed in this
paper integrates the physical constraint network on this basis to achieve the optimal overall
performance. The mean square error of porosity is reduced to 0.0026, which is about 46% less
than CNN model and about 33% less than mm transformer model; The mean square error of
permeability decreased to 0.048, and the average R? increased to 0.89. The above results show
that multimodal feature fusion, spatial operator modeling and physical consistency constraint
have obvious synergistic effect in the joint prediction of reservoir parameters. Table 6 further
analyzes the contribution of each core module to the model performance through ablation
experiments.

Table 6. Analysis of model ablation experiment results

Model variants Transformer GNO Physical constraints Average MSE
Complete model v v N 0.0026
81
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No physical constraints v v X 0.0031

No GNO v X v 0.0038

No Transformer X v v 0.0044

The lowest average MSE (0.0026) of all ablation settings was obtained for the complete
model, which verified the rationality of the overall architecture design. When the physical
constraint module is removed, the average MSE of the model rises to 0.0031, and the error
increase is about 19%, indicating that the physical consistency constraint plays an important
role in restraining non physical prediction and improving generalization ability. After removing
the map neural operator module, the average MSE further increased to 0.0038, with an error
increase of more than 46%, indicating that the spatial continuous operator is of key significance
for the modeling of complex geological structures. When the multimodal transformer module
is removed, the performance of the model decreases most obviously, and the average MSE
increases to 0.0044, which is about 69% higher than that of the complete model.

Figure 2 compares and analyzes the prediction errors of different models from the
perspective of statistical distribution.
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Figure 2. Statistical diagram of error distribution of different models on the test set

The results of box plot show that the error distribution range of CNN model is the widest,
there are many high error outliers, and the median absolute error is about 0.028; The error
distribution of the multimodal transformer model converges, and the median value decreases to
about 0.022, but there is still a long tail phenomenon. The error distribution of this model is the
most concentrated, the median absolute error is about 0.016, the interquartile spacing is
significantly reduced, and the number of outliers is significantly reduced. This result shows that
after the introduction of graph neural operator, the description of spatial continuity and nonlocal
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dependence in the model effectively inhibits the instability of local prediction, while the
physical constraint network further restricts the generation of non physical prediction results.

Figure 3 shows the trend curve of prediction error of each model with noise under different
noise levels to evaluate the robustness of the model.
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Figure 3. Variation Trend of model prediction error under different noise levels

As the input noise level increases from 0% to 15%, the mean square error of CNN model
rapidly increases from 0.0048 to 0.0174, with an error increase of more than 260%; The error
growth of multimodal transformer model is relatively gentle, but it still shows obvious
performance degradation under high noise conditions. In contrast, the MSE of this model
remains below 0.0052 when the noise is 10%, and only rises to 0.0069 when the noise is 15%,
and the overall error increase is controlled within 165%. This trend shows that the physical
constraints provide additional regularization for the model in the noise interference scene,
making the prediction results more stable and reliable.

8. DISCUSSION

From the perspective of engineering application, the multimodal transformer graph neural
operator physical constraint network proposed in this paper shows strong practical value in
complex reservoir conditions. The model can jointly predict the key reservoir parameters under
the constraint of multi-source data, reducing the error accumulation problem caused by
parameter inversion in traditional methods. When multi-attribute seismic data, logging data and
geological interpretation results are available at the same time, the model is especially suitable
for reservoir scenarios with strong heterogeneity and complex structure, and provides more
continuous and stable parameter input for reservoir evaluation and development scheme
optimization.

Multimodal fusion mechanism is one of the important factors to improve the prediction
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accuracy. By introducing multimodal transformer, the model can adaptively weigh the
contributions of different data sources at the feature level, so that high-resolution but local
information and low-resolution but global information complement each other. This fusion
method is particularly effective in areas where logging data are sparse or seismic attributes are
uncertain, and helps to alleviate the problem of single data source dominating the prediction
results. At the same time, the cross modal attention weight provides an interpretable basis for
analyzing the role of different data in prediction, enabling engineers to identify key data drivers
from the model output.

The introduction of graph neural operator in spatial modeling significantly enhances the
ability of the model to express complex geological structures. Compared with the traditional
neural network based on regular grid, the graph modeling method can flexibly adapt to irregular
spatial sampling and multi-scale structural changes, and has stronger ability to depict
discontinuous features such as faults and facies boundaries. In addition, the graph neural
operator can maintain good generalization performance in the case of grid resolution changes
or local missing data by learning the continuous space mapping relationship. This characteristic
is of great significance for the coexistence of different data accuracy and scale in practical
engineering.

The physical constraint network plays a key role in improving the reliability of prediction
results. By explicitly introducing the laws of reservoir seepage and rock physics into the model
optimization process, the model is constrained by physical consistency while data-driven
learning, which effectively reduces the probability of non physical prediction results. This
constraint mechanism not only improves the stability of the model under noise interference and
out of sample scenarios, but also provides a physical basis for the engineering interpretation of
the prediction results, which helps to enhance the acceptability of the model in practical
applications.

Although the model shows good performance in the experiment, there are still some
problems worthy of further study in the practical application of reservoir modeling. On the one
hand, the introduction of multimodal transformer and graph neural operator increases the
computational complexity of the model, which may bring some computational and storage
pressure to the large-scale 3D reservoir modeling task. On the other hand, the construction of
physical constraints depends on the physical model and parameter settings, and its weight
selection may need to be further adjusted under different reservoir conditions to avoid too strong
constraints affecting the data fitting ability.

The future improvement direction can be carried out from many aspects. The first is to
further explore the lightweight model structure and efficient training strategies to enhance the
feasibility of the model in large-scale engineering applications; The second is to introduce more
complex coupling constraints of multiple physical fields, so that the model can adapt to
multiphase flow or unsteady seepage conditions; The third is to evaluate the confidence interval
of the prediction results by combining the uncertainty quantification method, so as to provide
more comprehensive information support for engineering decision-making. Through these
improvements, it is expected to further expand the application scope of the model in the field
of actual reservoir modeling and underground engineering.

9. CONCLUSIONS AND PROSPECTS

Focusing on the key problem of joint prediction of reservoir parameters under complex
reservoir conditions, this paper proposes a unified modeling framework of multimodal
transformer graph neural operator physical constraint network. Through deep semantic fusion,
spatial continuous relationship modeling and physical consistency constraint of multi-source
reservoir data, the model realizes high-precision mapping from multi-modal observation to
reservoir parameter field. The experimental results show that this method has achieved better
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performance than the traditional method and the existing deep learning model in the prediction
of porosity, permeability, water saturation and other reservoir parameters. At the same time, it
shows good stability and robustness under the condition of complex geological structure and
noise interference.

From the perspective of method, the main innovation of this paper is to organically
integrate multimodal transformer, graph neural operator and physical constraint network, and
build a joint prediction model with expression ability, spatial modeling ability and physical
consistency. The multimodal transformer effectively excavates the complementary information
among seismic, logging and geological attributes. The graph neural operator breaks through the
restriction of regular grid and realizes the flexible modeling of continuous spatial mapping of
reservoir parameters. The physical constraint network improves the reliability and engineering
interpretability of the prediction results by introducing reservoir seepage and rock physical
mechanism. The combination of data driven and physical mechanism provides a new research
paradigm for intelligent prediction of reservoir parameters.

At the engineering application level, the proposed model has strong application potential
and can provide high-quality parameter input for reservoir evaluation, development scheme
optimization and numerical simulation. By jointly predicting multiple key parameters, the
model reduces the uncertainty accumulation caused by the traditional stepwise inversion to a
certain extent, and provides a more reliable basis for decision analysis under complex reservoir
conditions. The framework also has good scalability, and can flexibly introduce new data modes
or physical constraint forms according to different engineering requirements.

Looking forward to the future research direction, on the one hand, it is necessary to further
expand the model to a larger scale of three-dimensional reservoir data scenarios, and explore
efficient training strategies and parallel computing methods to meet the requirements of
practical engineering applications for computational efficiency; On the other hand, multi-phase
flow, in-situ stress and other multi-physical field coupling constraints can be considered to make
the model adapt to more complex underground processes. In addition, the combination of
uncertainty quantification and probability modeling methods to evaluate the confidence of the
prediction results will help to enhance the application value of the model in the actual
engineering decision-making. Through continuous improvement and expansion, the model is
expected to play a more important role in the field of intelligent reservoir modeling and
underground engineering.
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