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Abstract: Accurate prediction of reservoir parameters is the core of reservoir evaluation and 
development plan optimization, but traditional methods are difficult to effectively integrate 
multi-source heterogeneous data, depict complex spatial heterogeneity and ensure physical 
consistency. Therefore, this paper proposes a multimodal transformer graph neural operator 
physical constraint network (MT-GNO-PCN) to realize the joint high-precision prediction of 
reservoir parameters. Firstly, the multimodal transformer is used to integrate seismic attributes, 
logging curves and geological interpretation data to construct a unified semantic feature 
representation; Then the map neural operator is used to learn the continuous space mapping 
function and flexibly model the distribution law of reservoir parameters in irregular geometry 
and complex geological structure; Finally, the physical constraint loss term based on the 
relationship between Darcy's law and rock physics is introduced to enhance the physical 
rationality and generalization ability of the prediction results. Experiments on real and synthetic 
reservoir data sets show that the average mean square error of this method is about 46% lower 
than that of the traditional convolutional neural network and 33% lower than that of the model 
using only multimodal transformer in the prediction of porosity, permeability and water 
saturation; The average determination coefficient (R²) is 0.89, and the error increase is 
controlled within 165% under 15% noise interference, which is significantly better than the 
existing comparison model. The framework provides a new way for reservoir intelligent 
modeling driven by multi-source data with high accuracy, strong robustness and physical 
consistency. 
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1. INTRODUCTION 

Reservoir parameter prediction is a key basic problem in oil and gas development, 
underground energy utilization and related engineering fields. Its results directly affect the 
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accuracy of reservoir evaluation, development scheme design and production performance 
prediction. Porosity, permeability, water saturation and other parameters not only reflect the 
physical properties of the reservoir, but also play a key role in numerical simulation and 
engineering decision-making [1],[2],[3]. However, because the underground reservoir structure 
is complex, heterogeneous, and the available observation data has the characteristics of multi-
source heterogeneity and significant difference in resolution, the realization of high-precision, 
stable and reliable reservoir parameter prediction has always faced great challenges. 

Traditional reservoir parameter prediction methods mainly rely on seismic inversion and 
logging interpretation technology, and estimate parameters by establishing the mapping 
relationship between seismic response and rock physical properties [4],[5]. Such methods 
usually have clear physical meaning, but in practical applications, they often rely on strong 
assumptions or empirical models, which are sensitive to noise and geological complexity, and 
are difficult to effectively deal with strong nonlinear relationships and complex spatial changes 
[6],[7]. At the same time, with the exploration and development entering a high difficulty stage, 
the scale and complexity of multi-source data (such as multi-attribute seismic, logging curves 
and geological interpretation results) are increasing, and the ability of traditional methods in 
the collaborative utilization of multi-source information is gradually showing its shortcomings 
[8],[9],[10],[11]. 

In recent years, deep learning technology has shown significant potential in the field of 
reservoir modeling and parameter prediction. The method based on convolutional neural 
network and sequence model can automatically extract high-order features from the data, which 
improves the prediction accuracy to a certain extent [12],[13],[14]. However, most of the 
existing deep learning models focus on single data source or simple feature splicing, and lack 
of modeling the internal relationship between multi-source data [15],[16],[17]. In addition, 
conventional neural networks usually rely on fixed grid structure or local receptive fields in 
spatial modeling, which is difficult to effectively describe the non local spatial dependence and 
complex geological structure that are common in reservoirs, thus limiting the generalization 
ability of the model in real engineering scenarios. 

On the other hand, the pure data-driven model often iGNOres the basic constraints of 
underground physical processes, and is prone to produce physically unreasonable prediction 
results when the training data is sparse or the distribution changes [18],[19]. This problem is 
particularly prominent in the joint prediction of reservoir parameters. There is often a clear 
physical or petrophysical coupling relationship between different parameters. If there is no 
effective constraint, although the model fits well in the statistical sense, it is difficult to ensure 
the engineering availability. Therefore, how to introduce physical mechanism to improve the 
reliability of prediction results while maintaining the ability of deep learning and flexible 
modeling has become an important direction of current research. 

Based on the above background, this paper believes that it is necessary to promote the 
development of reservoir parameter prediction methods from three levels: first, fully excavate 
the complementary information among seismic, logging and geological data through 
multimodal learning mechanism to achieve higher-level feature fusion; Second, the idea of 
graph modeling is introduced to describe the nonlocal spatial correlation of reservoir parameters 
from the perspective of continuous space; The third is to integrate the reservoir seepage and 
petrophysical laws into the model training process to enhance the physical consistency and 
generalization ability of the prediction results. On this basis, this paper proposes a joint 
prediction model of reservoir parameters based on multimodal transformer graph neural 
operator physical constraint network, which aims to build a unified framework with expression 
ability, spatial modeling ability and physical constraint ability. 

The research goal of this paper is to systematically improve the accuracy, stability and 
physical rationality of joint prediction of reservoir parameters. The main contributions are as 
follows: the deep semantic fusion of multi-source reservoir data is realized through multimodal 
transformer; The continuous mapping relationship of reservoir parameters in complex spatial 
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structure is described by graph neural operator; By introducing the physical constraint network, 
the reservoir seepage and petrophysical mechanism are explicitly embedded in the model 
optimization process. The experimental results show that the performance of the proposed 
method is better than that of the existing methods in a number of reservoir parameter prediction 
tasks, which provides a new and effective way for intelligent modeling under complex reservoir 
conditions. 

2. RELATED WORK 

As one of the core issues in oil and gas exploration and development, the research progress 
of reservoir parameter prediction has changed from traditional physical interpretation method 
to data-driven intelligent method. The early prediction of reservoir parameters mainly depends 
on seismic inversion and logging interpretation technology [20],[21]. Seismic attributes, wave 
impedance or logging curves are mapped to key parameters such as porosity and permeability 
through physical equations and empirical formulas [22],[23]. These methods are usually based 
on geophysical inversion theory, such as linear inversion, backward propagation and model 
matching algorithm. The parameter field is estimated by fitting seismic observation with 
disturbance model. In addition, the log based interpretation method uses empirical models or 
statistical regression methods to estimate parameters through density, acoustic impedance and 
other measured data [24],[25]. Although these methods have a solid physical foundation, they 
are often inadequate in the face of complex geological bodies, nonlinear response and high 
noise data, and it is difficult to give consideration to accuracy and stability. 

With the improvement of computing power and the increase of data scale, deep learning 
method has been widely concerned in the field of reservoir modeling. Compared with 
traditional regression methods, convolutional neural network (CNN), recurrent neural network 
(RNN) and other models can automatically learn the nonlinear mapping relationship from 
massive data, and gradually apply to porosity prediction, permeability estimation, lithology 
classification and other tasks. Especially for the spatial structure learning of 3D seismic volume 
and logging data, the CNN based method can capture local patterns through multi-layer feature 
extraction, but its receptive field is limited and it is difficult to effectively characterize the long-
distance spatial dependence [26],[27]. Recent studies have tried to introduce attention 
mechanism to alleviate this problem, for example, combining the advantages of transformer 
structure in sequence tasks, global feature learning for multi-channel seismic attribute 
sequences. The multimodal transformer method realizes the information interaction between 
different data sources through the cross modal attention mechanism, and shows stronger 
expression ability in image curve fusion and temporal spatial semantic alignment [28],[29]. 
However, the existing transformer research mostly focuses on the mode fusion level, and the 
modeling of spatial continuity and geological structure complexity is still relatively lacking, 
which is difficult to fully capture the non local geological connection within the reservoir. 

Graph neural network (GNN) and its derivative operators have become an important tool 
for spatial data modeling in recent years, and have made remarkable achievements in social 
network analysis, molecular graph modeling and other fields. By using graph structure to 
represent spatial sample points and their adjacency, graph neural network can explicitly 
describe the spatial dependence between nodes, and realize information aggregation through 
message passing mechanism [30]. In geoscience problems, graph neural network is used for 
lithology prediction, stratigraphic division and 3D model reconstruction, which can be flexibly 
modeled under irregular sampling conditions. However, the traditional discrete message 
passing mechanism of GNN has some limitations in dealing with continuous media or cross 
scale coupling. Therefore, as a model that can directly approximate the continuous space 
operator, the graph neural operator has stronger function mapping ability and scale 
generalization performance by learning the kernel function defined by spatial coordinates and 
neighborhood relations, which provides a new idea for the spatial prediction of complex 
reservoir parameters. 
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At the same time, it has become an important research direction in recent years to integrate 
the physical laws into the deep learning framework to enhance the model interpretability and 
physical consistency. Physical constrained network embeds physical equations such as partial 
differential equations and conservation laws into the network training process in the form of 
loss terms or structural modules, so that the model can meet the basic physical laws while fitting 
the data. This method shows good generalization ability and prediction stability in the fields of 
fluid mechanics, rock physics inversion and earth system simulation. However, in the 
application of reservoir parameter prediction, the research on physical constraints mostly 
focuses on the constraints of a single physical quantity, such as pressure field or porosity, and 
the system modeling of complex physical coupling relationship in the joint prediction task of 
multiple parameters is still less involved. 

To sum up, traditional physical interpretation methods and statistical regression methods 
have bottlenecks in accuracy and generalization performance. Deep learning, especially 
transformer and graph neural network, has obvious advantages in feature expression and spatial 
structure modeling, while physical constraint methods show potential in improving physical 
consistency and reliability. However, the existing research generally lacks an overall framework 
that can handle multimodal data fusion, complex spatial relationship modeling and physical 
consistency constraints, which is the original intention of this paper to propose multimodal 
transformer graph neural operator physical constraint network. 

3. PROBLEM DEFINITION AND OVERALL FRAMEWORK 

The joint prediction of reservoir parameters aims to use multi-source heterogeneous 
observation data to carry out unified and collaborative high-precision inversion of multiple key 
physical parameters in underground reservoirs. Set the study area as a three-dimensional space 
domain: 

Ω ⊂ ℝ3 (1) 

In this region, reservoir parameters can be expressed as continuous function fields: 

y(x) = [𝜙𝜙(x), 𝑘𝑘(x), 𝑆𝑆𝑤𝑤(x), 𝑉𝑉𝑠𝑠ℎ(x)], x ∈ Ω (2) 

Where 𝜙𝜙 is porosity, 𝑘𝑘 is permeability, 𝑆𝑆𝑤𝑤 is water saturation, and 𝑉𝑉𝑠𝑠ℎ is argillaceous 
content. The goal of joint forecasting is to build a mapping function: 

ℱ:𝒳𝒳 → 𝒴𝒴 (3) 

It can approximate the real reservoir parameter distribution 𝒴𝒴 in the multimodal input 
data space 𝒳𝒳. 

The multimodal input data is composed of a variety of observation and interpretation 
results, which are recorded as: 

X = �X(𝑠𝑠), X(𝑤𝑤), X(𝑔𝑔)� (4) 

Where X(𝑠𝑠) ∈ ℝ𝑁𝑁𝑠𝑠×𝑇𝑇×𝐹𝐹𝑠𝑠  represents seismic attribute sequence, X(𝑤𝑤) ∈ ℝ𝑁𝑁𝑤𝑤×𝐷𝐷×𝐹𝐹𝑤𝑤  
represents logging curve data, and X(𝑔𝑔) ∈ ℝ𝑁𝑁𝑔𝑔×𝐹𝐹𝑔𝑔  represents geological prior or structural 
attribute. Different modes have significant differences in resolution, sampling method and 
physical meaning, which makes it difficult for the traditional single model to describe the time-
space correlation and cross modal complementary information at the same time. 

To solve the above problems, this paper proposes a joint modeling framework of 
multimodal transformer graph neural operator physical constraint network (MT-GNO-PCN). 
The framework consists of three progressive modules: multimodal feature representation layer, 
spatial continuous operator modeling layer and physical consistency constraint layer. The 
model realizes the unified mapping from multi-source data to reservoir parameter field through 
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end-to-end mode. 

In the overall framework, firstly, different modal data are mapped to a unified hidden space 
representation. Let the original input of mode 𝑚𝑚 be X(𝑚𝑚), and its embedding is expressed as: 

H(𝑚𝑚) = Embed(𝑚𝑚)�X(𝑚𝑚)� (5) 

Wherein, Embed(𝑚𝑚)(⋅)  is the encoding function of modal correlation. Then, a cross 
modal attention mechanism is constructed through the multimodal transformer to realize the 
information interaction at the feature level. Its output can be expressed as: 

H = Transformer�H(𝑠𝑠), H(𝑤𝑤), H(𝑔𝑔)� (6) 

It not only contains the high-order semantic features of each mode, but also explicitly 
models the dependencies between different observations, providing a unified input for 
subsequent spatial modeling. 

On this basis, in order to characterize the continuous variation of reservoir parameters in 
space, graph neural operator (GNO) is introduced to map the transformer output at operator 
level. The study area is discretized into a graph structure: 

𝒢𝒢 = (𝒱𝒱,ℰ) (7) 

The node set 𝒱𝒱 represents spatial sampling points, and the edge set ℰ represents spatial 
adjacency or Geological Association. The graph neural operator realizes the mapping from the 
input function to the output function by learning the operator kernel function 𝒦𝒦𝜃𝜃: 

y𝑖𝑖 = � 𝒦𝒦𝜃𝜃
𝑗𝑗∈𝒩𝒩(𝑖𝑖)

�x𝑖𝑖 , x𝑗𝑗� H𝑗𝑗 (8) 

Where 𝒩𝒩(𝑖𝑖) is the neighborhood of node 𝑖𝑖. This form breaks through the limitations of 
the traditional point prediction model, and makes the model have the generalization ability for 
different grid scales and spatial structures. 

In order to enhance the physical interpretability and prediction stability of the model, the 
physical constraint network is further introduced in the training phase. Taking Darcy's law as 
an example, its physical constraints can be formalized as: 

∇ ⋅ �𝑘𝑘(x)∇𝑝𝑝(x)� = 𝑞𝑞(x) (9) 

Where 𝑝𝑝  is the pressure field and 𝑞𝑞  is the source sink term. Convert it to physical 
residual loss: 

ℒ𝑝𝑝ℎ𝑦𝑦 =
1

∣ Ω ∣
� ∥ ∇ ⋅ �𝑘𝑘�∇𝑝̂𝑝� − 𝑞𝑞 ∥2
Ω

𝑑𝑑x (10) 

Together with data-driven loss ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, it forms a joint optimization goal: 

ℒ = ℒ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜆𝜆ℒ𝑝𝑝ℎ𝑦𝑦 (11) 

Where 𝜆𝜆 is the weight coefficient, which is used to balance the data fitting and physical 
consistency. 

Table 1 shows the main variables and their dimension settings in this joint prediction model 
to illustrate the corresponding relationship between multimodal input and output parameters. 
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Table 1. Variable description of multimodal input and reservoir parameter output 

Module Variable symbol Physical meaning Dimension 

Seismic mode X(𝑠𝑠) Seismic attribute body 128 × 256 × 6 

Logging mode X(𝑤𝑤) Logging curve 50 × 200 × 5 

Geological mode X(𝑔𝑔) Tectonic/facies zone properties 128 × 4 

Output parameters y Reservoir parameter vector 128 × 4 

Through the above problem definition and overall framework design, this paper realizes 
the unified mapping from the multi-modal observation data to the continuous field of reservoir 
parameters, which lays the theoretical and structural foundation for the subsequent modular 
modeling and experimental verification. 

4. MULTIMODAL TRANSFORMER REPRESENTATION LEARNING 
MODULE 

In the joint prediction task of reservoir parameters, there are significant differences in the 
physical meaning, sampling scale and statistical distribution of multi-source data. Direct 
splicing input often weakens the key information and introduces noise interference. Therefore, 
this study first constructs independent feature representation for different modal data, and 
achieves deep semantic alignment and fusion through multimodal transformer in the unified 
hidden space. Let the mode input of type 𝑚𝑚  be X(𝑚𝑚) , and its initial characteristic 
representation is completed by the mode specific encoder: 

Z(𝑚𝑚) = 𝑓𝑓enc
(𝑚𝑚)�X(𝑚𝑚)�,𝑚𝑚 ∈ {𝑠𝑠,𝑤𝑤,𝑔𝑔} (12) 

Where 𝑠𝑠,𝑤𝑤,𝑔𝑔 are seismic, logging and geological attribute modes respectively, and 𝑓𝑓enc
(𝑚𝑚) 

is composed of linear mapping and nonlinear activation function to complete dimension 
alignment and feature compression. 

Considering the sequence characteristics of seismic attributes in the time or depth 
dimension, the encoding process adopts the location embedding mechanism, and the spatial 
location information is explicitly introduced into the feature representation 

Z� (𝑠𝑠) = Z(𝑠𝑠) + P(𝑠𝑠) (13) 

Where 𝑃𝑃(𝑠𝑠) is a learnable position coding matrix. Logging and geological attribute modes 
focus on local lithology and macro structure information, and their embedding forms are 
mapped to the same dimension 𝑑𝑑 , so as to build an interactive representation space across 
modes. 

On this basis, the multimodal transformer realizes information fusion through the cross 
modal attention mechanism, and its core is to simultaneously model the internal correlation and 
dependency between modes. For any two modes 𝑚𝑚  and 𝑛𝑛 , the cross modal attention 
calculation form is: 

Attn𝑚𝑚←𝑛𝑛�Q(𝑚𝑚), K(𝑛𝑛), V(𝑛𝑛)� = softmax�
Q(𝑚𝑚)(K(𝑛𝑛))⊤

√𝑑𝑑
�V(𝑛𝑛) (14) 

The query matrix 𝑄𝑄(𝑚𝑚) is derived from the target modal features, the key and value matrix 
𝐾𝐾(𝑛𝑛),𝑉𝑉(𝑛𝑛) are derived from the auxiliary modes. Through the multi head attention mechanism, 
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the above process is extended to: 

MHA(Z) = �  
ℎ=1

𝐻𝐻

Attn(ℎ)(Z) (15) 

To capture the multi-scale correlation features in different subspaces. 

During the stacking process of transformer layers, the model updates the multimodal 
feature representation layer by layer, and finally outputs a unified high-dimensional fusion 
representation: 

H = TransformerMM�Z� (𝑠𝑠), Z(𝑤𝑤), Z(𝑔𝑔)� (16) 

It not only retains the key information of each mode, but also adaptively adjusts the 
contribution of different data sources through attention weight, so that the model can maintain 
stable performance in the case of uneven data quality or missing information. 

In order to quantitatively explain the dimensional changes and information gain before and 
after multimodal feature fusion, table 2 shows the feature dimension configuration of different 
modes in the transformer representation learning module in typical experiments. 

Table 2. Feature dimension setting of multimodal transformer representation learning 
module 

Modal type Original feature dimension Embedded dimension 𝑑𝑑 Transformer Output dimension 

Seismic attribute 24 128 256 

Logging curve 6 128 256 

Geological attribute 4 128 256 

Fusion representation – – 256 

It can be seen from table 2 that different modes are mapped to the unified embedding space 
before entering the transformer, and the output fusion features significantly enhance the cross 
modal semantic expression ability while maintaining the same dimension. The high-
dimensional fusion feature is then used as the input of the continuous function representation 
to provide a prior expression with sufficient physical and statistical information for the 
subsequent graph neural operator module. 

Through the above multimodal transformer representation learning module, the model 
realizes the deep-seated joint modeling of multi-source reservoir data, and lays a high-quality 
feature foundation for the spatial continuous prediction and physical constraint optimization of 
reservoir parameters. 

5. GRAPH NEURAL OPERATOR SPATIAL CORRELATION MODELING 

In the joint prediction of reservoir parameters, the underground medium usually presents 
the characteristics of strong heterogeneity and complex spatial structure. The spatial 
distribution of reservoir parameters not only depends on local neighborhood information, but 
also is affected by non local factors such as faults, facies zones and sedimentary structures. In 
order to describe this complex spatial correlation, based on the multimodal transformer 
representation learning, this paper introduces the graph neural operator (GNO) to model the 
continuous spatial mapping of reservoir parameters. This method breaks through the limitations 
of the traditional grid dependent neural network, and enables the model to maintain good 
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generalization ability under different spatial resolution and structure conditions. 

Firstly, the study area Ω is discretized into a spatial graph structure with physical and 
geometric significance 

𝒢𝒢 = (𝒱𝒱,ℰ,𝒲𝒲) (17) 

Where the node set 𝒱𝒱 = {𝑣𝑣𝑖𝑖}𝑖𝑖=1𝑁𝑁  represents the spatial sampling point or grid cell center, 
the edge set ℰ describes the spatial adjacency relationship between nodes, and 𝒲𝒲 is the edge 
weight set, which is used to describe the physical or geometric correlation strength between 
nodes. For any node 𝑣𝑣𝑖𝑖, its corresponding spatial coordinates are marked as x𝑖𝑖 ∈ ℝ3, and the 
node features are composed of the multimodal fusion representation H𝑖𝑖  obtained in the 
previous chapter. 

The Euclidean distance and geological constraint information are comprehensively 
considered in the construction of edge, and its weight is defined as: 

𝑤𝑤𝑖𝑖𝑖𝑖 = exp �−
∥ x𝑖𝑖 − x𝑗𝑗 ∥22

𝜎𝜎2
� ⋅ 𝜂𝜂𝑖𝑖𝑖𝑖 (18) 

Where 𝜎𝜎 is the distance scale parameter, and 𝜂𝜂𝑖𝑖𝑖𝑖 is the geological correlation coefficient, 
which is used to reflect the consistency of facies belt or fault barrier effect. In this way, the 
graph structure not only encodes the spatial geometric proximity, but also incorporates the prior 
information of reservoir structure. 

After constructing the spatial map, graph neural operator is introduced to learn the function 
mapping relationship of reservoir parameters. Unlike traditional graph neural networks, graph 
neural operators are designed to approximate continuous operators: 

𝒢𝒢𝜃𝜃:ℋ(Ω) → 𝒴𝒴(Ω) (19) 

Where ℋ(Ω) represents the input characteristic function space and 𝒴𝒴(Ω) represents the 
reservoir parameter function space. Its discrete form can be expressed as: 

y�𝑖𝑖 = � 𝒦𝒦𝜃𝜃
𝑗𝑗∈𝒩𝒩(𝑖𝑖)

�x𝑖𝑖 , x𝑗𝑗� H𝑗𝑗 + b (20) 

Where 𝒩𝒩(𝑖𝑖)  is the neighborhood set of node 𝑖𝑖 , 𝒦𝒦𝜃𝜃  is the learnable operator kernel 
function, and b is the bias term. This kernel function is usually parameterized by multi-layer 
perceptron: 

𝒦𝒦𝜃𝜃�x𝑖𝑖 , x𝑗𝑗� = MLP𝜃𝜃��x𝑖𝑖 − x𝑗𝑗 , 𝑤𝑤𝑖𝑖𝑖𝑖�� (21) 

Thus, the joint modeling of spatial position difference and edge weight information is 
realized. 

By stacking multi-layer graph neural operators, the model can gradually expand the 
receptive field and effectively capture the nonlocal spatial dependence. The 𝑙𝑙-tier update form 
is: 

H𝑖𝑖
�𝑙𝑙+1� = 𝜎𝜎 � � 𝒦𝒦𝜃𝜃

(𝑙𝑙)

𝑗𝑗∈𝒩𝒩(𝑖𝑖)

�x𝑖𝑖 , x𝑗𝑗� H𝑗𝑗
(𝑙𝑙)� (22) 

Where 𝜎𝜎(⋅)  is the nonlinear activation function. This structure enables the model to 
maintain the spatial continuity and have the ability to express complex geological structures. 

In order to intuitively explain the settings and physical meanings of nodes and edges in the 
graph neural operator module, table 3 summarizes the main elements of spatial graph modeling 
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in this paper and their corresponding explanations. 

Table 3. Description of modeling elements and physical meaning of reservoir space map 

Figure elements Symbol Meaning description 

Node 𝑣𝑣𝑖𝑖 Spatial sampling points/grid cells 

Node characteristics H𝑖𝑖 Multimodal fusion feature 

Edge 𝑒𝑒𝑖𝑖𝑖𝑖 Spatial association between nodes 

Edge weight 𝑤𝑤𝑖𝑖𝑖𝑖 Distance and Geological Correlation 

Operator kernel 𝒦𝒦𝜃𝜃 Continuous mapping function 

Through the above graph neural operator spatial correlation modeling, the model can 
further learn the continuous spatial variation law of reservoir parameters on the basis of 
multimodal features, effectively improve the depiction ability of complex geological structure, 
fault influence and non local dependence, and provide key support for the subsequent 
introduction of physical constraints and the realization of stable and reliable joint prediction. 

6. PHYSICAL CONSTRAINT NETWORK AND JOINT OPTIMIZATION 
STRATEGY 

Although multimodal transformer and graph neural operator can effectively improve the 
accuracy of reservoir parameter prediction, the pure data-driven model may still produce 
physically unreasonable results in the area of sample distribution changes or data sparse. In 
order to further enhance the reliability and generalization ability of the model in the actual 
geological scene, this paper introduces the PCN, which explicitly embeds the reservoir seepage 
and rock physical mechanism into the model training process, and guides the model to follow 
the basic physical laws while meeting the observation data by constructing the physical 
consistency loss function. 

In the problem of reservoir seepage, the single-phase steady flow in porous media can be 
described by Darcy's law and mass conservation equation, and its control equation is: 

∇ ⋅ �𝑘𝑘(x)∇𝑝𝑝(x)� = 𝑞𝑞(x), x ∈ Ω (23) 

Where 𝑘𝑘(x) is the permeability field, 𝑝𝑝(x) is the pressure field, and 𝑞𝑞(x) is the source 
sink term. By substituting the permeability 𝑘𝑘� and pressure  𝑝̂𝑝 predicted by the model into the 
above equation, the physical residual can be constructed: 

ℛ(x) = ∇ ⋅ �𝑘𝑘�∇𝑝̂𝑝� − 𝑞𝑞 (24) 

The physical consistency loss function is defined based on this: 

ℒphy =
1
𝑁𝑁𝑐𝑐
� ∥ ℛ(x𝑖𝑖) ∥22
𝑁𝑁𝑐𝑐

𝑖𝑖=1

(25) 

Where �x𝑖𝑖}𝑖𝑖=1
𝑁𝑁𝑐𝑐  is the set of constraint points sampled in the reservoir space. The loss term 

can make the model output maintain reasonable seepage behavior in space by punishing the 
prediction results that violate the physical equation. 

In addition to the seepage mechanism, the empirical relationship of rock physics also 
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provides important constraints for reservoir parameters. The relationship between porosity and 
P-wave velocity is often approximated by Wyllie time average formula: 

1
𝑉𝑉𝑝𝑝

=
𝜙𝜙
𝑉𝑉𝑓𝑓

+
1 − 𝜙𝜙
𝑉𝑉𝑚𝑚

(26) 

Where 𝑉𝑉𝑝𝑝  is the longitudinal wave velocity, 𝑉𝑉𝑓𝑓  and 𝑉𝑉𝑚𝑚  are the fluid and rock matrix 
velocities, respectively. Based on this relationship, the physical consistency loss of rock can be 
further constructed: 

ℒrock =
1
𝑁𝑁𝑟𝑟

� ∥
1
𝑉𝑉�𝑝𝑝,𝑖𝑖

− �𝜙𝜙
�𝑖𝑖
𝑉𝑉𝑓𝑓

+ 1 − 𝜙𝜙�𝑖𝑖
𝑉𝑉𝑚𝑚

� ∥2

𝑁𝑁𝑟𝑟

𝑖𝑖=1

(27) 

Thus, the physical coupling relationship between different prediction parameters is 
constrained at the feature level. 

In the training phase, data-driven loss and physical constraint loss are jointly optimized by 
weighting. Data driven loss is in the form of mean square error: 

ℒdata =
1
𝑁𝑁
� ∥ y�𝑖𝑖 − y𝑖𝑖 ∥22
𝑁𝑁

𝑖𝑖=1

(28) 

Where y𝑖𝑖 is the real reservoir parameter. The final joint loss function is defined as: 

ℒ = ℒdata + 𝜆𝜆1ℒphy + 𝜆𝜆2ℒrock (29) 

Where 𝜆𝜆1  and 𝜆𝜆2  are weight coefficients, which are used to balance the data fitting 
accuracy and physical consistency constraints. The joint optimization strategy makes the model 
pay more attention to the data distribution at the initial stage of training, and gradually 
strengthen the physical constraints at the convergence stage, so as to obtain stable and 
physically reasonable prediction results. In order to explain the setting and physical meaning of 
each component in the joint loss, table 4 shows the loss function configuration in typical 
experiments. 

Table 4. Composition and weight setting of loss function in physical constraint network 

Loss item Symbol Constrain objects Weight 

Data loss ℒdata Observation value of reservoir parameters 1.0 

Seepage restriction loss ℒphy Darcy equation 0.1 

Petrophysical loss ℒrock Velocity porosity relationship 0.05 

By introducing physical constraint network and joint optimization strategy, the model not 
only ensures the prediction accuracy, but also significantly improves the physical consistency 
of the results, effectively suppresses the phenomenon of non physical shocks and outliers, and 
provides an important guarantee for the reliability of joint prediction of reservoir parameters in 
practical engineering applications. 

7. EXPERIMENTAL DESIGN AND RESULT ANALYSIS 

In order to verify the effectiveness and generalization ability of the proposed multimodal 
transformer graph neural operator physical constraint network in the task of joint prediction of 
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reservoir parameters, systematic experiments were carried out on real and synthetic reservoir 
data sets. The experimental area is covered with typical sandstone reservoir structure, including 
multi-layer sedimentary units and transverse heterogeneity. The data set consists of three types 
of multimodal inputs: 3D seismic attribute volume, logging curve data and geological 
interpretation attributes, and takes porosity, permeability, water saturation and shale content as 
joint prediction targets. The overall data is divided into training set, verification set and test set 
according to the ratio of 7:2:1 to ensure the objectivity of model evaluation. 

In terms of evaluation indexes, in order to comprehensively measure the prediction 
performance of the model on different reservoir parameters, this paper uses the mean square 
error (MSE), mean absolute error (MAE) and determination coefficient (𝑅𝑅2) as quantitative 
evaluation criteria, which are defined as follows [31],[32]: 

MSE =
1
𝑁𝑁
�(𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

(30) 

MAE =
1
𝑁𝑁
� ∣ 𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖 ∣
𝑁𝑁

𝑖𝑖=1

(31) 

𝑅𝑅2 = 1 −
� (𝑁𝑁

𝑖𝑖=1 𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2

� (𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖 − 𝑦̄𝑦)2

(32) 

Where 𝑦𝑦𝑖𝑖 and 𝑦𝑦�𝑖𝑖 represent the real value and the predicted value respectively, and 𝑦̄𝑦 is 
the mean value of the real value. The above indexes evaluate the performance of the model 
from the perspective of error amplitude, robustness and goodness of fit. 

According to the prediction performance of different models on the test set, figure 1 shows 
the comparison relationship between the real value and predicted value of porosity prediction 
results. 
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Figure 1. Comparison of porosity and permeability prediction results of different models 
on the test set 

The scatter distribution of CNN model is relatively scattered, especially in the high 
porosity interval (>0.25), which obviously deviates from the ideal diagonal, indicating that its 
ability to describe nonlinear reservoir characteristics is limited. The multimodal transformer 
model has improved in the overall trend fitting, but there are still systematic deviations in the 
local interval. In contrast, the prediction points of MT-GNO-PCN model proposed in this paper 
are highly concentrated near the diagonal, and the dispersion of scattered points is significantly 
reduced. Taking the test set as an example, the mean square error of porosity prediction is about 
0.0026, which is about 46% lower than CNN model, and about 33% lower than the model using 
only multimodal transformer, which directly reflects the synergy of multimodal feature fusion 
and spatial operator modeling. Table 5 compares the overall performance of different methods 
in the task of joint prediction of reservoir parameters. 

Table 5. Performance comparison of different methods in reservoir parameter prediction 
task 

Model Porosity MSE Permeability MSE Water saturation MAE Average 𝑅𝑅2 

CNN 0.0048 0.092 0.061 0.71 

MM-Transformer 0.0039 0.075 0.053 0.78 

MT-GNO 0.0032 0.061 0.047 0.84 

MT-GNO-PCN 0.0026 0.048 0.039 0.89 

It can be seen from the results that the traditional CNN model is at a low level in terms of 
various indicators, with the mean square error of porosity of 0.0048, the mean square error of 
permeability of 0.092, and the average 𝑅𝑅2 of 0.71, which is difficult to effectively describe the 
complex spatial variation characteristics of reservoir parameters. After the introduction of 
multimodal transformer, the performance of the model is significantly improved, the prediction 
errors of porosity and permeability are reduced to 0.0039 and 0.075, respectively, and the 
average 𝑅𝑅2  is increased to 0.78, indicating that the cross modal attention mechanism has 
significant advantages in multi-source data fusion. 

After the map neural operator (mt-GNO) is further introduced, the ability of the model in 
spatial continuity modeling is enhanced, the prediction error of permeability is reduced from 
0.075 to 0.061, and the average 𝑅𝑅2 is increased to 0.84, especially in the high heterogeneous 
region, showing a more stable prediction effect. The MT-GNO-PCN model proposed in this 
paper integrates the physical constraint network on this basis to achieve the optimal overall 
performance. The mean square error of porosity is reduced to 0.0026, which is about 46% less 
than CNN model and about 33% less than mm transformer model; The mean square error of 
permeability decreased to 0.048, and the average 𝑅𝑅2 increased to 0.89. The above results show 
that multimodal feature fusion, spatial operator modeling and physical consistency constraint 
have obvious synergistic effect in the joint prediction of reservoir parameters. Table 6 further 
analyzes the contribution of each core module to the model performance through ablation 
experiments. 

Table 6. Analysis of model ablation experiment results 

Model variants Transformer GNO Physical constraints Average MSE 

Complete model ✓ ✓ ✓ 0.0026 
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No physical constraints ✓ ✓ ✗ 0.0031 

No GNO ✓ ✗ ✓ 0.0038 

No Transformer ✗ ✓ ✓ 0.0044 

The lowest average MSE (0.0026) of all ablation settings was obtained for the complete 
model, which verified the rationality of the overall architecture design. When the physical 
constraint module is removed, the average MSE of the model rises to 0.0031, and the error 
increase is about 19%, indicating that the physical consistency constraint plays an important 
role in restraining non physical prediction and improving generalization ability. After removing 
the map neural operator module, the average MSE further increased to 0.0038, with an error 
increase of more than 46%, indicating that the spatial continuous operator is of key significance 
for the modeling of complex geological structures. When the multimodal transformer module 
is removed, the performance of the model decreases most obviously, and the average MSE 
increases to 0.0044, which is about 69% higher than that of the complete model. 

Figure 2 compares and analyzes the prediction errors of different models from the 
perspective of statistical distribution. 

 
Figure 2. Statistical diagram of error distribution of different models on the test set 

The results of box plot show that the error distribution range of CNN model is the widest, 
there are many high error outliers, and the median absolute error is about 0.028; The error 
distribution of the multimodal transformer model converges, and the median value decreases to 
about 0.022, but there is still a long tail phenomenon. The error distribution of this model is the 
most concentrated, the median absolute error is about 0.016, the interquartile spacing is 
significantly reduced, and the number of outliers is significantly reduced. This result shows that 
after the introduction of graph neural operator, the description of spatial continuity and nonlocal 
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dependence in the model effectively inhibits the instability of local prediction, while the 
physical constraint network further restricts the generation of non physical prediction results. 

Figure 3 shows the trend curve of prediction error of each model with noise under different 
noise levels to evaluate the robustness of the model. 

  
Figure 3. Variation Trend of model prediction error under different noise levels 

As the input noise level increases from 0% to 15%, the mean square error of CNN model 
rapidly increases from 0.0048 to 0.0174, with an error increase of more than 260%; The error 
growth of multimodal transformer model is relatively gentle, but it still shows obvious 
performance degradation under high noise conditions. In contrast, the MSE of this model 
remains below 0.0052 when the noise is 10%, and only rises to 0.0069 when the noise is 15%, 
and the overall error increase is controlled within 165%. This trend shows that the physical 
constraints provide additional regularization for the model in the noise interference scene, 
making the prediction results more stable and reliable. 

8. DISCUSSION 

From the perspective of engineering application, the multimodal transformer graph neural 
operator physical constraint network proposed in this paper shows strong practical value in 
complex reservoir conditions. The model can jointly predict the key reservoir parameters under 
the constraint of multi-source data, reducing the error accumulation problem caused by 
parameter inversion in traditional methods. When multi-attribute seismic data, logging data and 
geological interpretation results are available at the same time, the model is especially suitable 
for reservoir scenarios with strong heterogeneity and complex structure, and provides more 
continuous and stable parameter input for reservoir evaluation and development scheme 
optimization. 

Multimodal fusion mechanism is one of the important factors to improve the prediction 
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accuracy. By introducing multimodal transformer, the model can adaptively weigh the 
contributions of different data sources at the feature level, so that high-resolution but local 
information and low-resolution but global information complement each other. This fusion 
method is particularly effective in areas where logging data are sparse or seismic attributes are 
uncertain, and helps to alleviate the problem of single data source dominating the prediction 
results. At the same time, the cross modal attention weight provides an interpretable basis for 
analyzing the role of different data in prediction, enabling engineers to identify key data drivers 
from the model output. 

The introduction of graph neural operator in spatial modeling significantly enhances the 
ability of the model to express complex geological structures. Compared with the traditional 
neural network based on regular grid, the graph modeling method can flexibly adapt to irregular 
spatial sampling and multi-scale structural changes, and has stronger ability to depict 
discontinuous features such as faults and facies boundaries. In addition, the graph neural 
operator can maintain good generalization performance in the case of grid resolution changes 
or local missing data by learning the continuous space mapping relationship. This characteristic 
is of great significance for the coexistence of different data accuracy and scale in practical 
engineering. 

The physical constraint network plays a key role in improving the reliability of prediction 
results. By explicitly introducing the laws of reservoir seepage and rock physics into the model 
optimization process, the model is constrained by physical consistency while data-driven 
learning, which effectively reduces the probability of non physical prediction results. This 
constraint mechanism not only improves the stability of the model under noise interference and 
out of sample scenarios, but also provides a physical basis for the engineering interpretation of 
the prediction results, which helps to enhance the acceptability of the model in practical 
applications. 

Although the model shows good performance in the experiment, there are still some 
problems worthy of further study in the practical application of reservoir modeling. On the one 
hand, the introduction of multimodal transformer and graph neural operator increases the 
computational complexity of the model, which may bring some computational and storage 
pressure to the large-scale 3D reservoir modeling task. On the other hand, the construction of 
physical constraints depends on the physical model and parameter settings, and its weight 
selection may need to be further adjusted under different reservoir conditions to avoid too strong 
constraints affecting the data fitting ability. 

The future improvement direction can be carried out from many aspects. The first is to 
further explore the lightweight model structure and efficient training strategies to enhance the 
feasibility of the model in large-scale engineering applications; The second is to introduce more 
complex coupling constraints of multiple physical fields, so that the model can adapt to 
multiphase flow or unsteady seepage conditions; The third is to evaluate the confidence interval 
of the prediction results by combining the uncertainty quantification method, so as to provide 
more comprehensive information support for engineering decision-making. Through these 
improvements, it is expected to further expand the application scope of the model in the field 
of actual reservoir modeling and underground engineering. 

9. CONCLUSIONS AND PROSPECTS 

Focusing on the key problem of joint prediction of reservoir parameters under complex 
reservoir conditions, this paper proposes a unified modeling framework of multimodal 
transformer graph neural operator physical constraint network. Through deep semantic fusion, 
spatial continuous relationship modeling and physical consistency constraint of multi-source 
reservoir data, the model realizes high-precision mapping from multi-modal observation to 
reservoir parameter field. The experimental results show that this method has achieved better 
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performance than the traditional method and the existing deep learning model in the prediction 
of porosity, permeability, water saturation and other reservoir parameters. At the same time, it 
shows good stability and robustness under the condition of complex geological structure and 
noise interference. 

From the perspective of method, the main innovation of this paper is to organically 
integrate multimodal transformer, graph neural operator and physical constraint network, and 
build a joint prediction model with expression ability, spatial modeling ability and physical 
consistency. The multimodal transformer effectively excavates the complementary information 
among seismic, logging and geological attributes. The graph neural operator breaks through the 
restriction of regular grid and realizes the flexible modeling of continuous spatial mapping of 
reservoir parameters. The physical constraint network improves the reliability and engineering 
interpretability of the prediction results by introducing reservoir seepage and rock physical 
mechanism. The combination of data driven and physical mechanism provides a new research 
paradigm for intelligent prediction of reservoir parameters. 

At the engineering application level, the proposed model has strong application potential 
and can provide high-quality parameter input for reservoir evaluation, development scheme 
optimization and numerical simulation. By jointly predicting multiple key parameters, the 
model reduces the uncertainty accumulation caused by the traditional stepwise inversion to a 
certain extent, and provides a more reliable basis for decision analysis under complex reservoir 
conditions. The framework also has good scalability, and can flexibly introduce new data modes 
or physical constraint forms according to different engineering requirements. 

Looking forward to the future research direction, on the one hand, it is necessary to further 
expand the model to a larger scale of three-dimensional reservoir data scenarios, and explore 
efficient training strategies and parallel computing methods to meet the requirements of 
practical engineering applications for computational efficiency; On the other hand, multi-phase 
flow, in-situ stress and other multi-physical field coupling constraints can be considered to make 
the model adapt to more complex underground processes. In addition, the combination of 
uncertainty quantification and probability modeling methods to evaluate the confidence of the 
prediction results will help to enhance the application value of the model in the actual 
engineering decision-making. Through continuous improvement and expansion, the model is 
expected to play a more important role in the field of intelligent reservoir modeling and 
underground engineering. 

 

Abbreviations 

CNN, Convolutional Neural Network; 
GNO, Graph Neural Operator; 
GNN, Graph Neural Network; 
MAE, Mean Absolute Error; 
MSE, Mean Square Error; 
MT-GNO-PCN, Multimodal Transformer Graph Neural Operator Physical Constraint 
Network; 
PCN, Physical Constraint Network; 
R², Coefficient of Determination; 
RNN, Recurrent Neural Network 

 

Supplementary Material 

Not applicable. 

 

https://doi.org/10.71451/ISTAER2604


86 
Ding et. al., ISTAER. 2604., 03 Feb 2026                         https://doi.org/10.71451/ISTAER2604 

Appendix 

Not applicable. 

 

Ethics approval and consent to participate. 

This study did not involve human participants, animal subjects, or any data requiring 
ethical approval. Therefore, ethics approval and consent to participate are not applicable. 

 

Acknowledgements 

The authors would like to thank the editors of this journal and all the anonymous reviewers 
who provided valuable comments on this work. 

 

Competing interests 

The authors declare that they have no financial or personal relationships that may have 
inappropriately influenced them in writing this article. 

 

Author contributions  

All authors have read and agreed to the published version of the manuscript. The individual 
contributions are specified as follows: Y.D.: Conceptualization, Methodology, Software, 
Validation, Formal analysis, Investigation, Data Curation, Writing – Original Draft, Writing – 
Review & Editing, Visualization. G.C.: Conceptualization, Methodology, Validation, 
Investigation, Resources, Funding acquisition, Writing – Review & Editing, Supervision, 
Project administration, Correspondence. 

 

Funding information 

The authors declare that no funds, grants, or other support were received during the 
preparation of this manuscript. 

 

Data availability 

The data that support the findings of this study are available upon request from the 
corresponding authors, G.C. 

 

Disclaimer 

The views and opinions expressed in this article are those of the authors and are the product 
of professional research. It does not necessarily reflect the official policy or position of any 
affiliated institution, funder, agency, or that of the publisher. The authors are responsible for 
this article’s results, findings, and content.  

 

Declaration of AI and AI-assisted Technologies in the Writing Process 

During the preparation of this work the authors used DeepSeek in order to check spell and 

https://doi.org/10.71451/ISTAER2604


87 
Ding et. al., ISTAER. 2604., 03 Feb 2026                         https://doi.org/10.71451/ISTAER2604 

grammar. After using this tool, the authors reviewed and edited the content as needed and takes 
full responsibility for the content of the publication. 

REFERENCES 

[1] Khalili, Y., & Ahmadi, M. (2023). Reservoir Modeling & Simulation: Advancements, 
Challenges, and Future Perspectives. Journal of Chemical & Petroleum Engineering, 57(2). 
DOI: https://doi.org/10.22059/jchpe.2023.363392.1447 

[2] Aljehani, A. S. (2025). Artificial intelligence for reservoir modeling and property estimation 
in petroleum engineering. Physics and Chemistry of the Earth, Parts A/B/C, 140, 104015. DOI: 
https://doi.org/10.1016/j.pce.2025.104015 

[3] Uchendu, O., Omomo, K. O., & Esiri, A. E. (2024). Conceptual framework for data-driven 
reservoir characterization: Integrating machine learning in petrophysical 
analysis. Comprehensive Research and Reviews in Multidisciplinary Studies, 2(2), 1-13. DOI: 
https://doi.org/10.57219/crrms.2024.2.2.0041 

[4] Ehsan, M., Chen, R., Abdelrahman, K., Manzoor, U., Hussain, M., Ullah, J., & Zaheer, A. M. 
(2025). Application of Petrophysical Analysis, Rock Physics, Seismic Attributes, Seismic 
Inversion, Multi-attribute Analysis, and Probabilistic Neural Networks for Estimating 
Petrophysical Parameters for Source and Reservoir Rock Evaluations in the Lower Indus Basin, 
Pakistan: M. Ehsan et al. Natural Resources Research, 34(6), 3073-3101. DOI: 
https://doi.org/10.1007/s11053-025-10550-6 

[5] Grana, D., Azevedo, L., De Figueiredo, L., Connolly, P., & Mukerji, T. (2022). Probabilistic 
inversion of seismic data for reservoir petrophysical characterization: Review and 
examples. Geophysics, 87(5), M199-M216. DOI: https://doi.org/10.1190/geo2021-0776.1 

[6] Cao, X., Liu, Z., Hu, C., Song, X., Quaye, J. A., & Lu, N. (2024). Three-dimensional geological 
modelling in earth science research: an in-depth review and perspective 
analysis. Minerals, 14(7), 686. DOI: https://doi.org/10.3390/min14070686 

[7] Zhao, T., Wang, S., Ouyang, C., Chen, M., Liu, C., Zhang, J., ... & Wang, L. (2024). Artificial 
intelligence for geoscience: Progress, challenges, and perspectives. The Innovation, 5(5). DOI: 
https://doi.org/10.1016/j.xinn.2024.100691 

[8] Zhang, L., Xie, Y., Xidao, L., & Zhang, X. (2018, May). Multi-source heterogeneous data 
fusion. In 2018 International conference on artificial intelligence and big data (ICAIBD) (pp. 
47-51). IEEE. DOI: https://doi.org/10.1109/ICAIBD.2018.8396165 

[9] Zhao, X., Jia, Y., Li, A., Jiang, R., & Song, Y. (2020). Multi-source knowledge fusion: a 
survey. World Wide Web, 23(4), 2567-2592. DOI: https://doi.org/10.1109/DSC.2019.00026 

[10] Liu, Y., Zhang, G., Hao, J., & Chen, Y. (2025). Multi-source knowledge fusion framework: 
assessing suppliers’ research and development of complex products. Management Decision. 
DOI: https://doi.org/10.1108/MD-11-2024-2546 

[11] Wang, B., Wu, L., Li, W., Qiu, Q., Xie, Z., Liu, H., & Zhou, Y. (2021). A semi-automatic 
approach for generating geological profiles by integrating multi-source data. Ore Geology 
Reviews, 134, 104190. DOI: https://doi.org/10.1016/j.oregeorev.2021.104190 

[12] Zhang, Q., Zhu, L., & Huang, D. S. (2018). High-order convolutional neural network 
architecture for predicting DNA-protein binding sites. IEEE/ACM transactions on 
computational biology and bioinformatics, 16(4), 1184-1192. DOI: 
https://doi.org/10.1109/TCBB.2018.2819660 

https://doi.org/10.71451/ISTAER2604
https://doi.org/10.22059/jchpe.2023.363392.1447
https://doi.org/10.1016/j.pce.2025.104015
https://doi.org/10.57219/crrms.2024.2.2.0041
https://doi.org/10.1007/s11053-025-10550-6
https://doi.org/10.1190/geo2021-0776.1
https://doi.org/10.3390/min14070686
https://doi.org/10.1016/j.xinn.2024.100691
https://doi.org/10.1109/ICAIBD.2018.8396165
https://doi.org/10.1109/DSC.2019.00026
https://doi.org/10.1108/MD-11-2024-2546
https://doi.org/10.1016/j.oregeorev.2021.104190
https://doi.org/10.1109/TCBB.2018.2819660


88 
Ding et. al., ISTAER. 2604., 03 Feb 2026                         https://doi.org/10.71451/ISTAER2604 

[13] Liu, B., Tang, R., Chen, Y., Yu, J., Guo, H., & Zhang, Y. (2019, May). Feature generation by 
convolutional neural network for click-through rate prediction. In The World Wide Web 
Conference (pp. 1119-1129). DOI: https://doi.org/10.1145/3308558.3313497 

[14] Wu, K., Liu, J., Liu, P., & Yang, S. (2019). Time series prediction using sparse autoencoder 
and high-order fuzzy cognitive maps. IEEE transactions on fuzzy systems, 28(12), 3110-3121. 
DOI: https://doi.org/10.1109/TFUZZ.2019.2956904 

[15] Li, X., Qiu, Y., Zhou, J., & Xie, Z. (2021). Applications and challenges of machine learning 
methods in Alzheimer's disease multi-source data analysis. Current Genomics, 22(8), 564-582. 
DOI: https://doi.org/10.2174/1389202923666211216163049 

[16] Jiang, Y., Li, C., Sun, L., Guo, D., Zhang, Y., & Wang, W. (2021). A deep learning algorithm 
for multi-source data fusion to predict water quality of urban sewer networks. Journal of 
Cleaner Production, 318, 128533. DOI: https://doi.org/10.1016/j.jclepro.2021.128533 

[17] Guo, D., Yang, X., Peng, P., Zhu, L., & He, H. (2025). The intelligent fault identification 
method based on multi-source information fusion and deep learning. Scientific Reports, 15(1), 
6643. DOI: https://doi.org/10.1038/s41598-025-90823-5 

[18] Liu, Y., Liao, S., Yang, Y., & Zhang, B. (2024). Data-driven and physics-informed neural 
network for predicting tunnelling-induced ground deformation with sparse data of field 
measurement. Tunnelling and Underground Space Technology, 152, 105951. DOI: 
https://doi.org/10.1016/j.tust.2024.105951 

[19] Taloma, R. J. L., Cuomo, F., Comminiello, D., & Pisani, P. (2025). Machine learning for smart 
water distribution systems: exploring applications, challenges and future 
perspectives. Artificial Intelligence Review, 58(4), 120. DOI: https://doi.org/10.1007/s10462-
024-11093-7 

[20] Qiang, Z., Yasin, Q., Golsanami, N., & Du, Q. (2020). Prediction of reservoir quality from log-
core and seismic inversion analysis with an artificial neural network: A case study from the 
Sawan Gas Field, Pakistan. Energies, 13(2), 486. DOI: https://doi.org/10.3390/en13020486 

[21] Gogoi, T., & Chatterjee, R. (2019). Estimation of petrophysical parameters using seismic 
inversion and neural network modeling in Upper Assam basin, India. Geoscience 
Frontiers, 10(3), 1113-1124. DOI: https://doi.org/10.1016/j.gsf.2018.07.002 

[22] Bashir, Y., Siddiqui, N. A., Morib, D. L., Babasafari, A. A., Ali, S. H., Imran, Q. S., & Karaman, 
A. (2024). Cohesive approach for determining porosity and P-impedance in carbonate rocks 
using seismic attributes and inversion analysis. Journal of Petroleum Exploration and 
Production Technology, 14(5), 1173-1187. DOI: https://doi.org/10.1007/s13202-024-01767-x 

[23] Rostami, A., Kordavani, A., Parchekhari, S., Hemmati-Sarapardeh, A., & Helalizadeh, A. 
(2022). New insights into permeability determination by coupling Stoneley wave propagation 
and conventional petrophysical logs in carbonate oil reservoirs. Scientific Reports, 12(1), 
11618. DOI: https://doi.org/10.1038/s41598-022-15869-1 

[24] Agbadze, O. K., Qiang, C., & Jiaren, Y. (2022). Acoustic impedance and lithology-based 
reservoir porosity analysis using predictive machine learning algorithms. Journal of Petroleum 
Science and Engineering, 208, 109656. DOI: https://doi.org/10.1016/j.petrol.2021.109656 

[25] Riahi, M. A., & Fakhari, M. G. (2022). Pore pressure prediction using seismic acoustic 
impedance in an overpressure carbonate reservoir. Journal of Petroleum Exploration and 
Production Technology, 12(12), 3311-3323. DOI: https://doi.org/10.1007/s13202-022-01524-y 

[26] Lang, X., Li, C., Wang, M., & Li, X. (2024). Semi-supervised seismic impedance inversion 

https://doi.org/10.71451/ISTAER2604
https://doi.org/10.1145/3308558.3313497
https://doi.org/10.1109/TFUZZ.2019.2956904
https://doi.org/10.2174/1389202923666211216163049
https://doi.org/10.1016/j.jclepro.2021.128533
https://doi.org/10.1038/s41598-025-90823-5
https://doi.org/10.1016/j.tust.2024.105951
https://doi.org/10.1007/s10462-024-11093-7
https://doi.org/10.1007/s10462-024-11093-7
https://doi.org/10.3390/en13020486
https://doi.org/10.1016/j.gsf.2018.07.002
https://doi.org/10.1007/s13202-024-01767-x
https://doi.org/10.1038/s41598-022-15869-1
https://doi.org/10.1016/j.petrol.2021.109656
https://doi.org/10.1007/s13202-022-01524-y


89 
Ding et. al., ISTAER. 2604., 03 Feb 2026                         https://doi.org/10.71451/ISTAER2604 

with convolutional neural network and lightweight transformer. IEEE Transactions on 
Geoscience and Remote Sensing, 62, 1-11. DOI: https://doi.org/10.1109/TGRS.2024.3401225 

[27] Farahani, S., & Bahroudi, A. (2025). 3D mineral prospectivity modeling using a multi-scale 
CNN–transformer: A case study from the Siahcheshmeh gold deposit, NW Iran. Ore Geology 
Reviews, 107066. DOI: https://doi.org/10.1016/j.oregeorev.2025.107066 

[28] Wang, J., Yu, L., & Tian, S. (2025). Cross-attention interaction learning network for multi-
model image fusion via transformer. Engineering Applications of Artificial Intelligence, 139, 
109583. DOI: https://doi.org/10.1016/j.engappai.2024.109583 

[29] Zheng, F., Li, W., Wang, X., Wang, L., Zhang, X., & Zhang, H. (2022). A cross-attention 
mechanism based on regional-level semantic features of images for cross-modal text-image 
retrieval in remote sensing. Applied Sciences, 12(23), 12221. DOI: 
https://doi.org/10.3390/app122312221 

[30] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2020). A comprehensive survey on 
graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-
24. DOI: https://doi.org/10.1109/tnnls.2020.2978386 

[31] Du, Y., Chen, G., Pang, C., & Zhao, T. (2026). Prediction of fracture and vug parameters in 
carbonate reservoirs using a combined T-GNO-PINN approach. Journal of Seismic 
Exploration, 35(1), Article 025330057. DOI: https://doi.org/10.36922/JSE025330057 

[32] Chen, G., Zhao, T., Pang, C., Seenoi, P., Papukdee, N., & Busababodhin, P. (2025). An 
attention-guided graph neural network and U-Net++-based reservoir porosity prediction 
system. Journal of Seismic Exploration, 34(4), 70-87. DOI: 
https://doi.org/10.36922/JSE025300044 

https://doi.org/10.71451/ISTAER2604
https://doi.org/10.1109/TGRS.2024.3401225
https://doi.org/10.1016/j.oregeorev.2025.107066
https://doi.org/10.1016/j.engappai.2024.109583
https://doi.org/10.3390/app122312221
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.36922/JSE025330057
https://doi.org/10.36922/JSE025300044

